UNIVERSITY OF COLORADO - ANSCHUTZ MEDICAL CAMPUS

PERINATAL RESEARCH FACILITY - POWER, HVAC, BOILER UPGRADES

CONSTRUCTION DRAWINGS

ISSUED FOR CONSTRUCTION 10/27/2023

CONTRACTOR'S STORAGE

PERINATAL RESEARCH **FACILITY**

CONTRACTOR PARKING **ROCK LOT**

GENERAL NOTES

- the Owner.
- 2. The Contractor is responsible for the protection of the Owner's
- brought to the attention of the Architect. No deviation from the construction documents shall be made without the written approval
- 4. The contractor is responsible for the coordination of all trades. Debris shall be cleaned up and removed at the end of each day.
- Normal operation of the Owner facilities shall be maintained during construction. All work inside building is to be coordinated with the
- 7. Any and all damage to existing conditions, including but not limited to landscaping, paving, and building finishes, shall be repaired or replaced as directed by the Owner.
 - All work shall be installed in accordance with all applicable codes

SCOPE OF WORK

REPLACEMENT OF EXISTING ROOFTOP HVAC EQUIPMENT WITH NEW EQUIPMENT OF SIMILAR SIZE AND WEIGHT

CODE INFORMATION

APPLICABLE CODES:

- 2021 INTERNATIONAL BUILDING CODE 2021 INTERNATIONAL EXISTING BUILDING CODE
- 2021 INTERNATIONAL FIRE CODE
- 2021 NFPA 170 STANDARD FOR FIRE SAFETY AND EMERGENCY SYMBOLS
- 2021 COLORADO PLUMBING CODE
- 2021 COLORADO FUEL GAS CODE
- 2021 INTERNATIONAL ENERGY CONSERVATION CODE 2020 NATIONAL ELECTRICAL CODE
- ICC A117.1-2017 2017 (ACCESSIBILITY DESIGN CODE)

TYPE V-B ORIGINAL BUILDING (WEST OF GRIDLINE 4) NONSPRINKLERED

2001 ADDITION (EAST OF GRIDLINE 4)

FLOOR AREA - NO CHANGE TO FLOOR AREA OR OCCUPANCY AS A PART OF THIS PROJECT

SHEET INDEX

GENERAL NOTES, CODE REQUIREMENTS

ARCHITECTURAL

A - 1.0REFLECTED CEILING PLAN A - 2.0ROOF PLAN

MECHANICAL MECHANICAL LEGEND AND SCHEDULES

MECHANICAL DEMO ROOF PLAN

MECHANICAL SCHEDULES
MECHANICAL DETAILS M - 0.2M - 0.3M - 0.4MECHANICAL DIAGRAMS PH-1 CONTROL MATRIX PH-1 CONTROL MATRIX MECHANICAL FLOOR PLAN

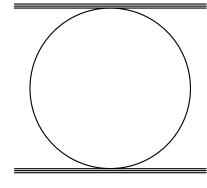
MECHANICAL ROOF PLAN M - 3.0MECHANICAL ENLARGED PLAN

MECHANICAL PIPING DIAGRAM M - 3.1

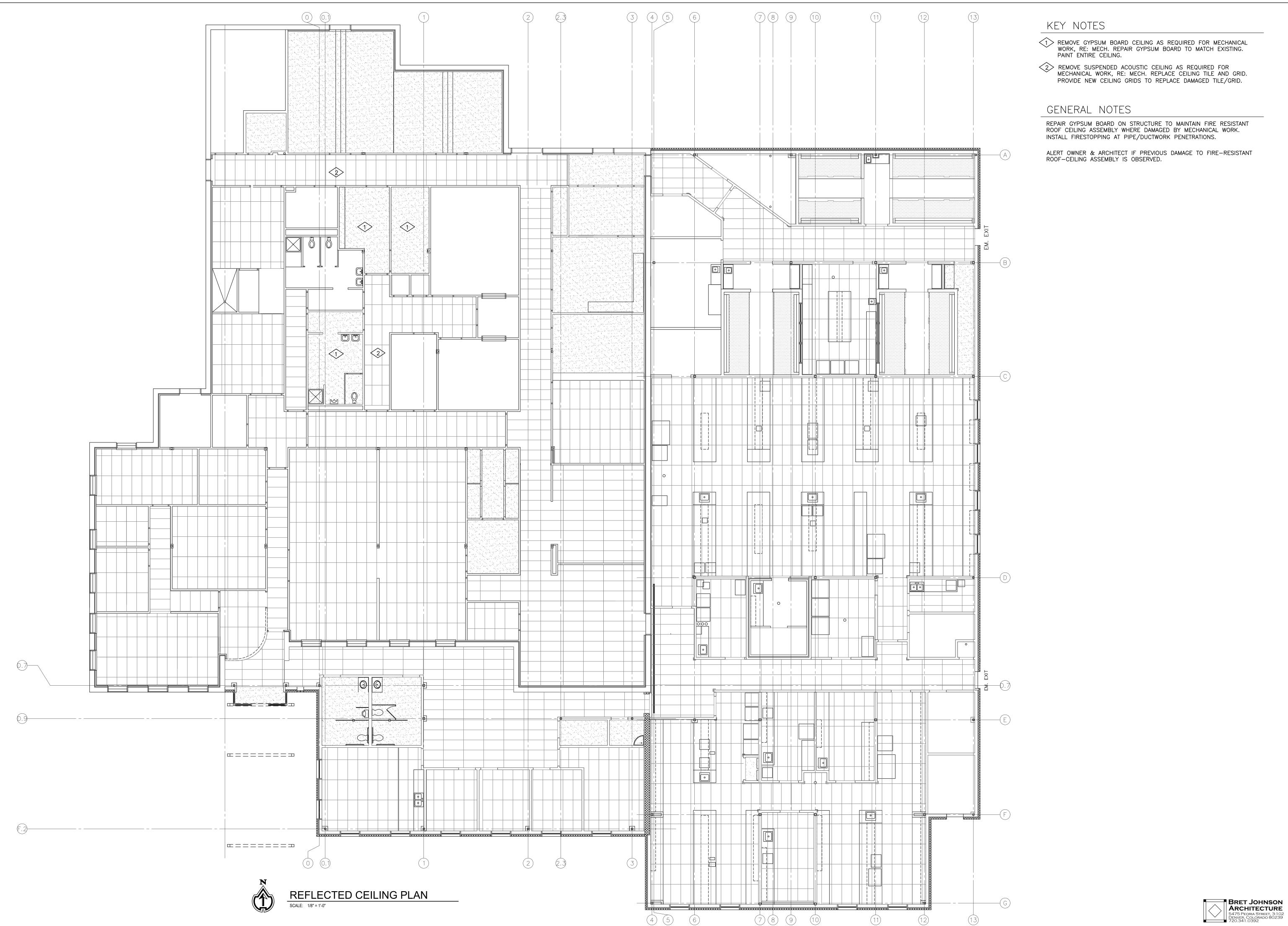
ELECTRICAL

ELECTRICAL LEGEND AND DETAILS ELECTRICAL ONE-LINE DIAGRAM E - 0.3ELECTRICAL PANEL SCHEDULES E-0.4 E-1.0 ELECTRICAL SITE PLAN POWER FLOOR PLAN E-2.0 E-3.0 ED-2.0 ELECTRICAL ROOF PLAN

ELECTRICAL ENLARGED PLAN ELECTRICAL DEMO ROOF PLAN schutz


amp

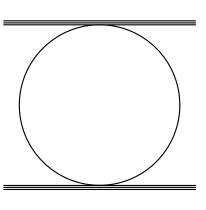
edic

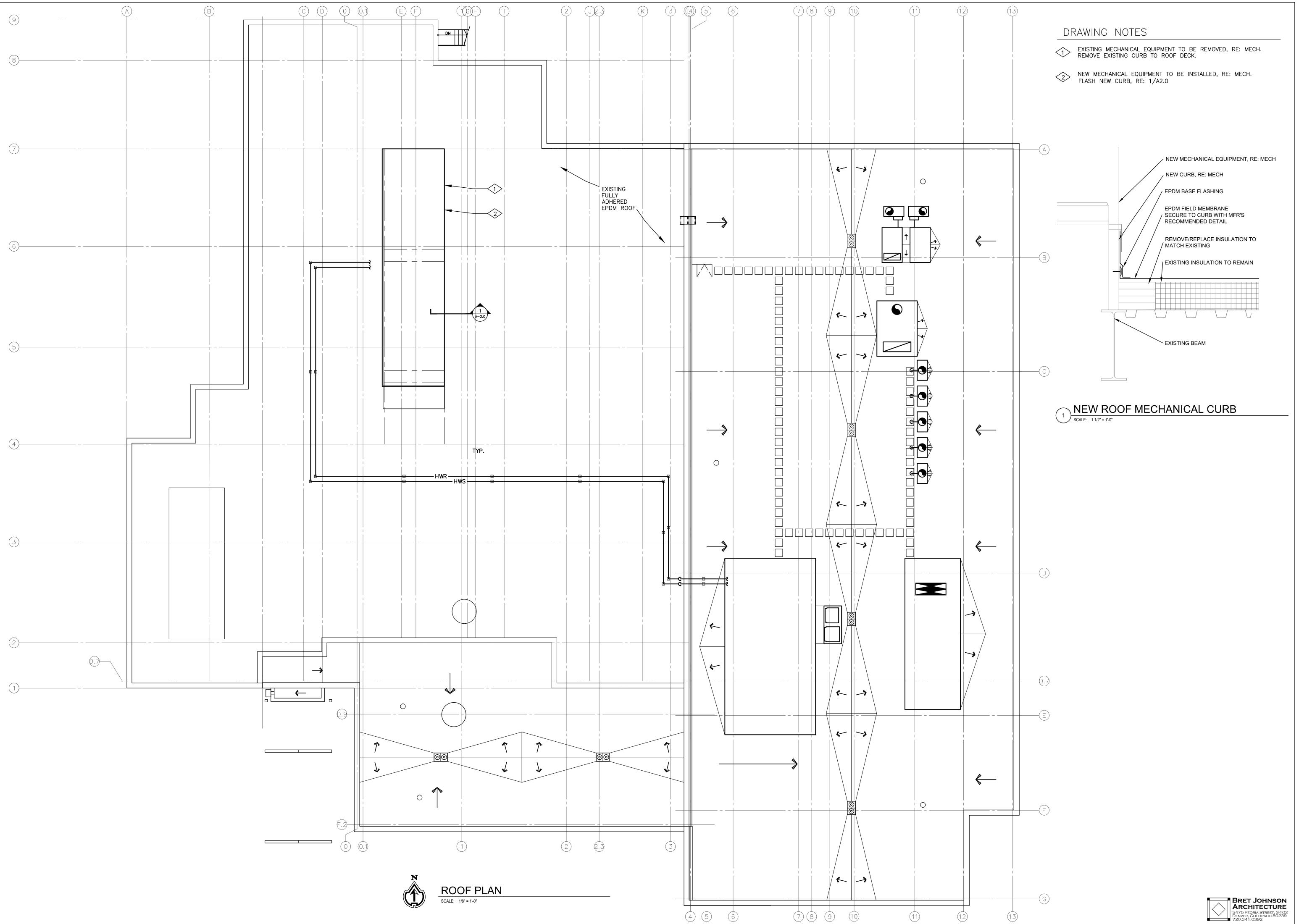

Construction Documents 09/22/2023 Issued for Construction 10/27/2023

MEP JOB: 22318

DESIGNED: SH CHECKED:

BRET JOHNSON ARCHITECTURE 5475 PEORIA STREET, 3-102 DENVER, COLORADO 80239 720.341.0392

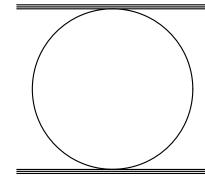



Jniversity of Colorado - Anschutz Medical Campus Perinatal Research Facility

Construction Documents 09/22/2023

MEP JOB: 22318
DESIGNED: SH
CHECKED:

A-1.0



University of Colorado - Anschutz Medical Campu Perinatal Research Facility

ISSUE DATE
Construction Documents 09/22/2023
Issued for Construction 10/27/2023

MEP JOB: 22318
DESIGNED: SH

A-2.0

			PLUME	BING FIXTU	JRE SCHE	DULE						
					MANUFACTURER &	FAUCET TRIM	ACCEPTABLE		F	ROUGH IN CON	NECTION SIZIN	6
SYMBOL	TYPE	ADA	ACCESSORIES .	FINISH	MODEL NUMBER	MANUFACTURER &	MANUFACTURERS	REMARKS	WASTE	VENT	HOT	COLD
						MODEL NUMBER			(INCHES)	(INCHES)	(INCHES)	(INCHES)
	EMERGENCY EYE AND FACE WASH		INTEGRAL FLOW CONTROL, I/2" IPS STAY		HAWS		BRADLEY	PROVIDE WITH THERMAL DISPERSION				
EFM-I	PEDESTAL MOUNTED, STAINLESS STEEL BOWL,	YES	OPEN BALL VALVE OPERATED BY SWING	COMPOSITE	7351-7641		GUARDIAN EQUIP.	MONITOR EQUAL TO AMERITROL	2	2	1/2	
	YELLOW POP-OFF DUST COVER.		ARM OPERATION, IN-LINE MESH WATER STRAINER				SPEAKMAN	MODEL FXIOOO. SEE NOTE 2.			(85F-105F)	
	FLOOR DRAIN - 5" ROUND TOP, ROUND CAST				ZURN		JOSAM		NOTED			1
FD-I	IRON BODY ,FLASHING COLLAR, ADJUSTABLE	YES	ZIOT2 TRAP PROTECTOR	NICKLE BRONZE	Z4I5-BZI		JR SMITH	FOR FINISHED FLOOR AREAS	ON	2		
	STRAINER HEAD, SECURED GRATE						MIFAB	PROVIDED BY AHU MANUFACTURER	PLANS			
NOTE:	I. ALL CONNECTIONS TO POTABLE WATER SYSTEM SHALL	CONFORM TO N	ISF/ANSI-61 AND NSF/ANSI-372 EFFECTIVE 01/04/2014.							_	_	

			DESIGN	MINIMUM	INLET	OUTLET	SET	FALL <i>O</i> FF							
SYMBOL	MODEL	SIZE	FLOW	FLOW	PRESSURE	PRESSURE	PRESSURE	PRESSURE	NOTES						
	YMBOL MODEL SIZE FLOW FLOW PRESSURE PRESSURE PRESSURE PRESSURE NOTES (IN) GPM GPM (PSIG) (PSIG) (PSIG)														
PRV-I	WILKINS 500XL	I	31	0	75	55	55	II	1, 2						

SPECIFICATION:
ALL BRONZE, SPRING AND DIAPHRAGM, MANUAL ADJUSTMENT FOR OUTLET WATER PRESSURE, 2" AND SMALLER SHALL HAVE FEMALE
THREAD CONNECTIONS. 2-1/2" AND LARGER SHALL HAVE FLANGED CONNECTIONS. PROVIDE WITH IN-LINE INLET STRAINER. VALVES SHALL
BE SUITABLE FOR WATER PRESSURES UP TO 300PSI.

2. COORDINATE INTERLOCKING SENSOR NOTIFICATIONS FROM THERMAL DISPERSION MONITOR WITH SIEMENS.

=	NOTES	SYM
	I, 2	TM
		NOTEC

		7	HERMO	STATIC	MIXING	VALVE	SCHEDU	JLE		
SYMBOL	MODEL	SERVICE	HOT WATER INLET TEMP (F)	COLD WATER INLET TEMP (F)	OUTLET TEMP (F)	MINIMUM FLOW (GPM)	DESIGN FLOW (GPM)	PRESSURE DROP (PSI)	SIZE (IN)	NOTES
TMV-I	920IEW	EYEWASH STATION	140	55	<i>8</i> 5	3.7	3.7	2	I/2"	l, 2
NOTES:		ACED ON HAME								

I. EQUIPMENT SCHEDULE BASED ON: HAWS.

2. ACCEPTABLE MANUFACTURERS INCLUDE: LAWLER, POWERS, WEBSTONE, BRADLEY, AND SYMMONS.

SPECIFICATION:

THERMOSTATIC WATER MIXING VALVE WITH SOLID BIMETAL OR LIQUID FILLED THERMOSTAT, ADJUSTABLE TEMPERATURE LIMIT STOP, INTEGRAL COMBINATION CHECK STOPS ON INLETS. COLOR CODED DIAL THERMOMETER ON OUTLET, INTEGRAL WALL SUPPORT, CAST LEVER HANDLES. BRONZE, BRASS AND STAINLESS STEEL INTERNAL COMPONENTS WITH ROUGH BRONZE OR CHROME PLATED FINISH. LOCKING TEMPERATURE REGULATOR. MASTER MIXING TYPE VALVE SHALL CONSIST OF LARGE THERMOSTATIC WATER MIXING VALVE FOR HIGH FLOWS, SMALL THERMOSTATIC WATER MIXING VALVE FOR SMALL FLOWS, WITH PRESSURE REGULATING VALVE WITH PRESSURE GAUGES, FACTORY PREASSEMBLED AND TESTED PIPING MANIFOLD, INLET AND OUTLET BALL VALVES. EACH THERMOSTATIC MIXING VALVE SHALL BE AS SPECIFIED ABOVE. ASSEMBLY SHALL BE SURFACE MOUNTED TO STEEL FRAMEWORK.

			BACI	KFLO	W Pi	REVENT	ER SCH	HEDU	JLE		
SYMBOL	MODEL	TYPE	MINIMUM FLOW (GPM)	MAXIMUM FLOW (GPM)	DESIGN FLOW (GPM)	PRESSURE DROP - DESIGN (PSI)	PRESSURE DROP - MAX (PSI)	SIZE (IN)	LENGTH (IN)	SERVICE	NOTES
BFP-I	LF825F	DOUBLE CHECK	0	30	15	II	20	ı	13	DOMESTIC	1, 2, 3
	I. ACCEPTAB	LE MANUFACTURERS IN	CLUDE: ZURN	N-WILKINS, W	ATTS, CASI	H-ACME, FEBCO, AN	1ES.				
	2 CONNECTIO	NS TO DOMESTIC WAT	ER SYSTEM S	SHALL BE LE	AD FREE						

									STE	AM BOILER	SCHEDULE								
						MBH	MBH			BOILER		NUMBER	NATURAL GAS		OPERATING	1	ELECTRICAL	-	
SYMBOL	MANUFACTURER	MODEL	SERVICE	TYPE	BOILER	INPUT	OUTPUT	LBS/HR	BURNER	MAX FIRING RATE	OPERATING PRESSURE	<i>o</i> F	SUPPLY PRESSURE	FUEL	WEIGHT	BURNER	VOLT	PHASE	REMARKS
					(HP)	@S.L.	@ 5300'		(HP)	(CFH)	(PSIG)	TUBES	(IN WG)		(LBS)	RPM			
B-I	RITE	P506	STEAM	WATER TUBE	50	2,093	1,373	1,725	3/4	2 <i>,</i> 891	75	63	7	NAT. GAS	3,000	3,450	480	3	I - IO

REMARKS:

- I. EQUIPMENT SCHEDULE BASED ON: RITE. ACCEPTABLE MANUFACTUER'S INCLUDE: AJAX, BRYAN.
- 2. 150 PSI CONSTRUCTION.
- 3. BASED ON 830 CU.FT /HR NATURAL GAS FUEL HEATING.
- 4. PROVIDE SINGLE POINT POWER CONNECTION FOR BOILER CONTROL PANEL.
- 5. POWERFLAME C2-G-15 MODULATING BURNER. BURNER CAPACITY SHALL BE SIZED FOR 5,280' ELEVATION.
- 6. PROVIDE MANUFACTURER'S BOILER SKID PACKAGE SYSTEM INCLUDING CONDENSATE RETURN TANK (CRT-I) AND PUMP (P-6), BLOWDOWN SEPARATOR (BS-I), WATER SOFTENER SYSTEM (WS-I), AND CHEMICAL TREATMENT SYSTEM (CTP-I).
- 7. PROVIDE 208Y/3PH CONNECTION FOR CONDENSATE RETURN TANK PUMP P-6.
- 8. PROVIDE 120Y CONNECTION FOR WS-I METERED TWIN VALVE.
- 9. PROVIDE 120V CONNECTION FOR CTP-1 CHEMICAL METERING PUMP.

				l	PUMP	SCHED	ULE						
SYMBOL	SERVICE	MANUFACTURER	PUMP TYPE	MODEL	GPM	HEAD FEET MC	EFF %	НP	RPM	VOLTS/ PHASE	SUCTION SIZE INCHES	DISCH SIZE INCHES	REMARKS
(E)P-I	HEATING WATER	B € 6	BASE MOUNTED	1510 2-1/2 BB	245	50	13	7 1/2	1750	480/3	3	2-1/2	ı
P-4	PH-I HEATING COIL	B € 6	IN-LINE	SERIES 60 2-1/2 F	125	20	44	2	1750	480/3	2-1/2	2-1/2	2
P-6	CONDENSATE RETURN TANK	MTH PUMPS	BASE MOUNTED	T4IJ-BF	Ю	IOO PSI OPERATION		2	1750	480/3			3

I. PUMP IS EXISTING TO REMAIN. SHOWN HERE FOR REFERENCE ONLY.

- 2. INTERLOCK WITH EXISTING WH COIL FREEZE PROTECTION CONTROL OPERATION. SEE SEQUENCE OF OPERATION FOR ADDITIONAL INFORMATION
- 3. INTERLOCK WITH BOILER FEED WATER CONTROLLER. TO TO INTERLOCK WITH EXISTING FEED WATER CONDENSATE PUMP SERVING CLEAN STEAM GENERATOR

MECHANICAL LEGEND NOT ALL ITEMS LISTED BELOW ARE USED ON THIS SET OF MECHANICAL DRAWINGS DESCRIPTION ABBY. DESCRIPTION -----HS------ HS HOT WATER SUPPLY REFERENCE BUBBLE ---HR--- HR \mid HOT WATER RETURN SHT ------CHS------- | CHS | CHILLED WATER MECHANICAL/ELECTRICAL EQUIP# EQUIPMENT DESIGNATION REMOVE EXISTING **──** UNDERCUT DOOR AIR FLOW **→** ---CR--- CR|CONDENSER RETURN NEW TO EXISTING DOUBLE LINE DUCTWORK SYMBOL DESCRIPTION CONDENSATE RECTANGULAR SUPPLY AIR DUCT UP PC PUMPED CONDENSATE D EQUIPMENT DRAIN RECTANGULAR SUPPLY AIR DUCT DOWN RECTANGULAR RETURN AIR / EXHAUST ---RS--- RS REFRIGERANT RECTANGULAR PIPING SYMBOLS RETURN AIR / EXHAUST DESCRIPTION DUCT DOWN ARROW IN LINE ROUND DUCT UP INDICATES DIRECTION OF FLOW INDICATES PIPE ROUND DUCT DOWN SLOPE DOWN BOTTOM PIPE CONNECTION BRANCH DUCT 45° TAKE-OFF RECTANGULAR PIPING DOWN DUCT ELBOW WITH FIXTURE TRAP OR DRAIN TRAP TURNING VANES PIPING CAP OR PLUG RADIUS ELBOW RECTANGULAR/ROUND BALANCING VALVE/ FLOW MEASURING DEVICE TRANSITION CALIBRATED BALANCING CONNECTION BALL VALVE --- PLUG VALVE SINGLE LINE DUCTWORK → GATE VALVE SYMBOL DESCRIPTION CHECK VALVE RECTANGULAR BUTTERFLY VALVE DUCT ELBOW WITH TURNING VANES FLOW SWITCH RADIUS ELBOW RECTANGULAR/ROUND SOLENOID VALVE PRESSURE REDUCING DUCT TRANSITION 3-WAY TEMPERATURE CONICAL SPIN-IN ___ CONTROL VALVE ---- 2-WAY TEMPERATURE CONICAL SPIN-IN CONTROL VALVE FITTING W/DAMPER RELIEF VALVE FLEXIBLE DUCT STRAINER CONTROL DEVICES AND DAMPERS STRAINER WITH SYMBOL DESCRIPTION BLOW-OFF VALVE HUMIDISTAT PRESSURE SENSOR PRESSURE GUAGE SENSOR WALL MOUNTED THERMOSTAT THERMOMETER UNIT MOUNTED THERMOSTAT PRESSURE AND SWITCH TEMPERATURE TAP FIRE DAMPER CONCENTRIC REDUCER RADIATION DAMPER ECCENTRIC REDUCER SMOKE DAMPER COMBINATION FIRE FLEXIBLE CONNECTOR AND SMOKE DAMPER MANUAL YOLUME DAMPER DRAIN VALVE WLOCKING QUADRANT MOTORIZED DAMPER MANUAL AIR VENT ABBREVIATIONS RETURN AIR REFER TO SUPPLY AIR SAFETY RELIEF VALVE TEMPERATURE CONTROL CONTROL MECHANICAL CONTRACTOR NOMALLY CLOSED NOT IN CONTRACT NORMALLY OPEN NOT TO SCALE OUTSIDE AIR PRESSURE REDUCING VALVE EXISTING ELECTRICAL CONTRACTOR

APPLICABLE CODE STANDARDS

EQUIPMENT GENERAL CONTRACTOR

2021 INTERNATIONAL BUILDING CODE 2021 INTERNATIONAL MECHANICAL CODE 2021 INTERNATIONAL ENERGY CONSERVATION CODE 2021 INTERNATIONAL FIRE CODE 2021 INTERNATIONAL PLUMBING CODE 2021 INTERNATIONAL FUEL GAS CODE

MEP ENGINEERING INC. CLIENT CENTRIC CONSULTING 6402 S. Troy Circle, Suite 100 (W) 303.936.1633 Centennial, CO 80111 (F) 303.934.3299 info@mep-eng.com www.mep-eng.com

ampn

0

Medical schutz cility 0 D Ø C 0 0 0 13243 East 23rd Av Aurora, CO 80045 PRF - Power HVAC ersity erinatal Univ ISSUE

MEP JOB: 22318 DESIGNED: ADS

10/06/2023

Issued for Construction 10/27/2023

CHECKED: KVB MECHANICAL LEGEND AND SCHEDULES

CUSTOM AIR HANDLING HEATING AND COOLING UNIT SCHEDULE SUPPLY FAN DATA APPROX APPROX APPROX ELECTRICAL NO. FACE ENTERING AIR TEMP LEAVING AIR TEMP NOMINAL MIN CFM ESP FACE TOTAL ROOF HEIGHT OPER CFM ESP NO. AREA COIL VELOCITY DB WB DB WB FLOW EWT LWT | WPD | CAPACITY | VOLT/ | MCA | MOCP TOTAL O.A. IN W.C. APPROX OF FAN TOTAL IN W.C. APPROX OF FAN CURB (W/ CURB) WT SYMBOL MANUFACTURER MODEL TONS COIL REMARKS HP (F) (F) (GPM) (F) (FT) (MBH) PHASE @5300' @5300' @ 5,300' RPM FANS HP @5300' @ S.L. RPM FANS SERVICE SQ. FT. ROWS (FPM) (F) DIM(IN) (IN) (LBS) MILLER PICKING HEATING 474 -20 -- | 68.5 | -- | 162.6 | 180 | 153.9 | 12.9 25 | 20000 | 3.5 l - 13 COOLING 42.4 8 471 100 61 50.3 39.3 241.9 44 54 37.5 1,080

REMARKS:

- I. ACCEPTABLE MANUFACTURER'S INCLUDE: MILLER PICKING (JCI), HAAKON, ENERGY LABS, INGENIA, GOVERNAIR AND ENGINEERED AIR
- 2. EXTERNAL STATIC PRESSURE DOES NOT INCLUDE LOSSES FOR UNIT CASING, FILTERS, OR COILS.
- 3. COOLING COIL CAPACITY BASED ON ENTERING AIR TEMPERATURE SHOW IN SCHEDULE AND 95 F AMBIENT AT CONDENSER.
- 4. BURNER SHALL BE DESIGNED TO FIRE ON NATURAL GAS, 7" WC.
- 5. PROVIDE WITH 12" HIGH BASE RAIL.
- 6. PROVIDE RTU WITH DUCT SMOKE DETECTOR MOUNTED IN RETURN DUCT. MECHANICAL CONTRACTOR SHALL PROVIDE INSTALLATION, ELECTRICAL CONTRACTOR SHALL PROVIDE WIRING TO FACP.
- 7. PROVIDE UNIT WITH FACTORY MOUNTED VFD CONTROL. PROVIDE DUCT MOUNTED STATIC PRESSURE SENSOR FOR AIR FLOW CONTROL.
- 8. TO TO PROVIDE AND INSTALL CONTROLS FOR 100% ECONOMIZER OPERATIONS.
- 9. ALL SECTIONS SHALL BE FACTORY PRE-WIRED INCLUDING LIGHTS AND SWITCHES, FAN MOTORS AND STARTERS, WIRING TO AND FROM VARIABLE FREQUENCY DRIVE. VFD SHALL BE SHIPPED LOOSE AND FIELD INSTALLED.
- 10. PROVIDE WITH MUNTERS Z-DUCT 85M20 PLATE HEAT EXCHANGER. PROVIDE HEAT TRACE OF CONDENSATE PIPING FOR FREEZE PROTECTION
- II. FLOOR DRAINS SHALL BE FACTORY INSTALLED, FLASHED AND SEALED WATER TIGHT.
- 12. WATER COIL SIZING AND PERFORMANCES BASED ON 50% PROPYLENE GLYCOL. PROVIDE RIGHT HAND COIL CONNECTIONS WITH ACCESS DOOR. 13. PROVIDE WITH EVAPORATIVE PRE-COOLER SECTION. INTERLOCK PUMP CONTROL WITH UNIT OPERATIONS.

SEQUENCE OF OPERATION:

SEE SHEET M-0.5 FOR SEQUENCE OF OPERATIONS.

						EVAF	PORAT	ΓΙVE PR	E-COC	LER I	MODI	JLE S	CHEDUL	.E								
		CELL DA	TA		CELL PERFO	ORMANCE					EVAPORA	TIVE COOLIN	IG DATA		ELEC	TRICAL			UNIT	DIMENSIONS		
		CFM	ESP	ENTERING AIR	ENTERING AIR	LVG AIR	LVG AIR	TOTAL MBH	CELL	MEDIA	MAX	SAT	TOTAL	MAKE-UP	PUMP		UNIT	UNIT	UNIT	SUMP	UNIT	
SYMBOL	MANUFACTURER	TOTAL	IN M.C.	TEMP	TEMP	TEMP	TEMP	DISPLACED	DEPTH	FACE	VEL	EFF	FLOW RATE	WATER	SIZE	VOLT/	MIDTH	HEIGHT	DEPTH	DEPTH	WEIGHT	REMARKS
		@5300'	@ 5300'	DB (F)	WB (F)	DB (F)	WB (F)		(IN)	(SQ/FT)	(FPM)	%	(GPM)	(GPM)	(HP)	PHASE	(IN)	(IN)	(IN)	(IN)	(LBS)	
EVAP-I	PREMIER IND.	20,000	.25	90	59	62.2	62	596.2	12	40	500	89.8%	4.53	1.3	1/3	120/1	116	66	26	10	1,893	1 - 7

REMARKS:

- I. ACCEPTABLE MANUFACTURERS INCLUDE PREMIER INDUSTRIES.
- 2. COOLING MODULE SHALL BE STAINLESS STEEL GRADE 304.
- 3. PROVIDE WITH FLOAT VALVE ASSEMBLY AND BALANCING VALVE.
- 4. PROVIDE WITH AUTOFLUSH, LOW WATER FLOW SENSOR AND DRAIN DOWN FREEZE PROTECTION SYSTEM
- 5. PROVIDE WITH ACCUMULATIVE FLOW METER WITH TRANSMITTING READ-OUT.
- 6. PROVIDE WITH ELECTRICAL CONTROLS TO INTERFACE WITH EXISTING BAS PROVIDED BY TO CONTRACTOR.
- 7. PROVIDE WITH MAGNEHELIC GAUGES WITH TRANSMITTING TYPE OUTPUT SIGNAL WIRED TO REMOTE CONTROL SYSTEM.

SEQUENCE OF OPERATION:

SEE SHEET M-0.5 FOR SEQUENCE OF OPERATIONS.

											F	OUR	PIPE	FAN	COI	L UN	IT SCI	HED	ULE													
										COOLING F	REQUIREME	NTS							H	EATING RE	QUIREMENT	S										
				FAN AIR		MIN SENS	MIN TOTAL	EAT	Γ	LA	∖ T					RUNOUT	MIN							RUNOUT	FILTER			FAN MOTOR	₹		OPERATING	
SYMBOL	MANUFACTURER	MODEL	TYPE	FLOW	SP	CAPACITY	CAPACITY	DB	ИB	DB	ИB	FLOW	EMT	LMT	WPD	SIZE	CAPACITY	EAT D	3 LAT DB	FLOW	EMT	LWT	MPD	SIZE	THICKNESS	POWER	VOLT	PHASE	RPM	MOTOR	WEIGHT	REMARKS
				(CFM)	(IN M.C.)	(MBH)	(MBH)	(F)	(F)	(F)	(F)	(GPM)	(F)	(F)	(FT)	(IN)	(MBH)	(F)	(F)	(GPM)	(F)	(F)	(FT)	(IN)	AND TYPE	(HP)				TYPE	(LBS)	
FCU-I	TRANE	FCDB080	HORIZONTAL CABINET	800	0.308	29	29	9 5	63	55	49	5.8	44	54	16	I	24.6	55	89.5	2.5	180	160	2	3/4	I" THROWAWAY	0.22	208	ı	1,399	ECM	164	I-8

- I. ACCEPTABLE MANUFACTURERS INCLUDE: TRANE
- 2. EXTERNAL STATIC PRESSURE DOES NOT INCLUDE LOSSES FOR UNIT CASING, FILTERS, OR COILS.
- 3. UNIT CFM AND COIL CAPACITIES BASED ON HIGH SPEED OPERATION.
- 4. PROVIDE WITH MANUFACTURER'S 7-DAY PROGRAMMABLE WALL THERMOSTAT.
- 5. UNIT SHALL BE COMPATIBLE FOR INTERFACE WITH BAS. COORDINATE ALL REQUIRED POINTS AND MONITORING WITH SIEMENS. 6. GRAVITY CONDENSATE DRAIN.
- 7. PROVIDE WITH SECONDARY DRAIN PAN.
- 6. PROVIDE WITH AUTOMATIC BALANCING 3-WAY HOOKUP KIT FOR CHILLED WATER AND HYDRONIC COIL CONNECTIONS.

SEE SHEET M-0.5 FOR SEQUENCE OF OPERATIONS.

				PH-	1 AIR	TO /	AIR F	IEAT	EXC	HANGEF	R SCI	HEDU	JLE					
						SUPPLY A	IR.						EXHAU:	ST AIR				
				SUPPLY AIR	SUPPLY AIR EAT LAT					EXHAUST AIR		E/	A T	L	AT			
SYMBOL	MANUFACTURER	MODEL	MODE	FLOW			МВ	DB	MB	FLOW	APD	DB	WB	DB	WB	THERMAL	PERFORMANCE	REMARKS
				(CFM)	(IN)	(F)	(F)	(F)	(F)	(CFM)	(IN)	(F)	(F)	<i>(</i> F)	(F)	%	Q MBH/HR	
HX-I	MUNTERS	85M2O	SUMMER	20,000	1.05	4 5		80		20,000	1.25	72		<i>8</i> 5		64	238	l, 2
			WINTER	20,000	1.33	-10		32		20,000	1.18	72	Х	27	Х	63	813	l, 2

- I. TO BE PROVIDED AND INSTALLED BY CUSTOM AIR HANDLER MANUFACTUER.
- 2. FIELD INSTALL ELECTRIC HEAT TRACING ON CONCEALED CONDENSATE PIPING FOR FREEZE PROTECTION.

			LO	UVEF	SCH	IEDUI	LE .			
				s	IZE (IN)	MIN. FREE				
SYMBOL	MANUFACTURER	MODEL	SERVICE	MIDTH	HEIGHT	AREA	MATERIAL	FRAME	DEPTH	REMARKS
						(SQ FT)		STYLE	IN	
LVR-I	RUSKIN	L6375	COMBUSTION AIR INTAKE	42	36	4.84	STEEL	STATIONARY DRAINABLE	6	I- 4

- I. ACCEPTABLE MANUFACTURERS INCLUDE: GREENHECK, LOUVERS AND DAMPERS AND RUSKIN.
- 2. PROVIDE WITH AIR PROVING SENSOR.
- 3. PROVIDE WITH 120 VOLT MOTORIZED CONTROL DAMPER.
- 4. PROVIDE WITH RAIN SHIELD.

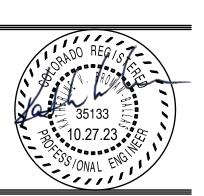
LOUVER SPECIFICATION:

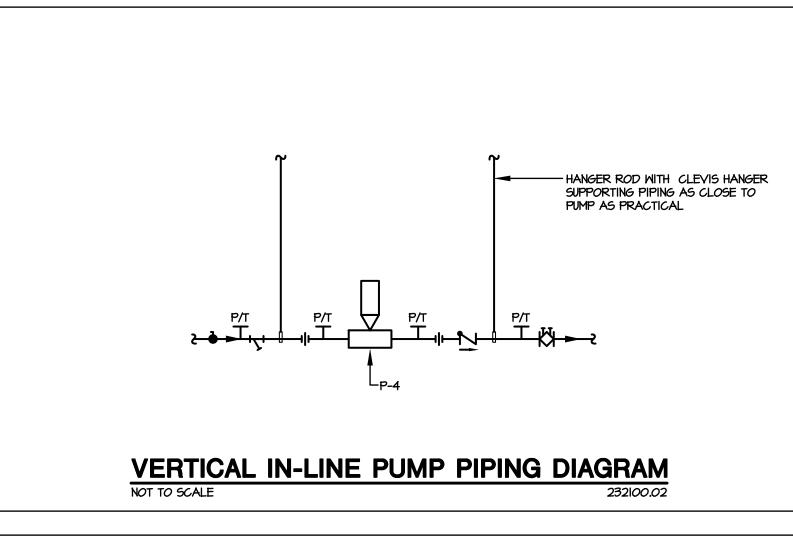
A. 16 GAUGE GALVANIZED STEEL FRAME AND BLADES, 1/2" MESH 19 GAUGE GALVANIZED STEEL WIRE SCREEN.

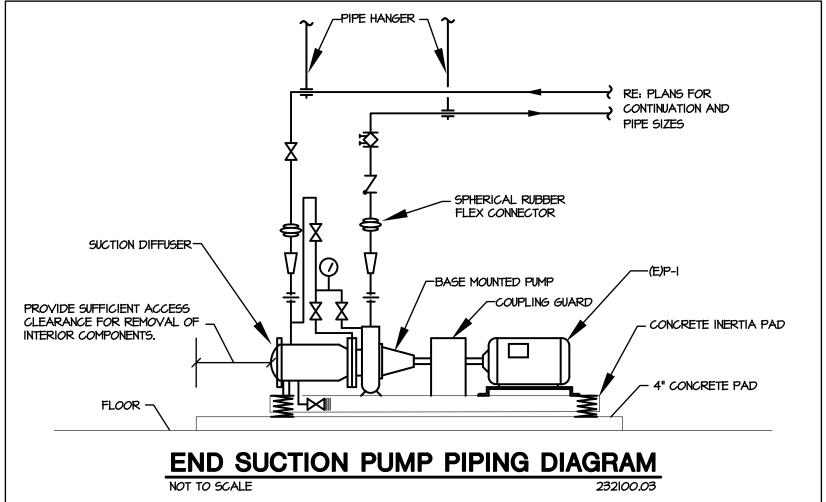
ENGINEERING INC. CLIENT CENTRIC CONSULTING 6402 S. Troy Circle, Suite 100 (W) 303.936.1633 Centennial, CO 80111 (F) 303.934.3299 info@mep-eng.com

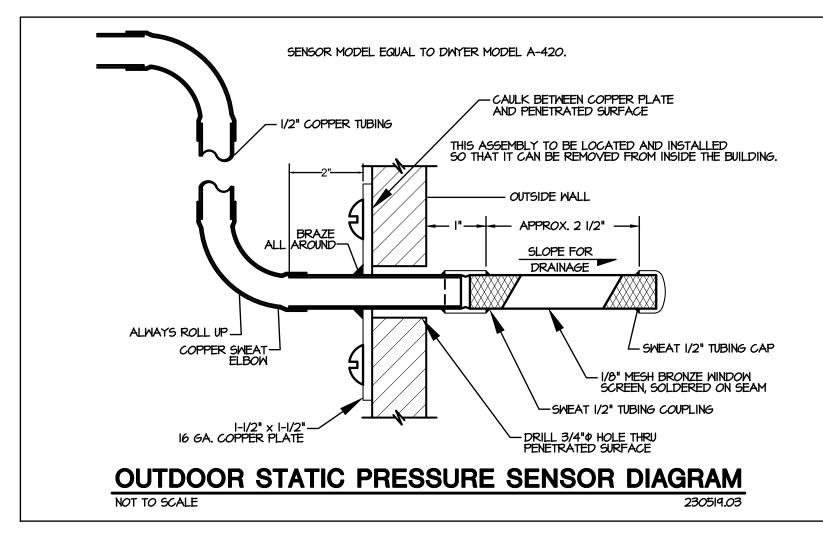
0

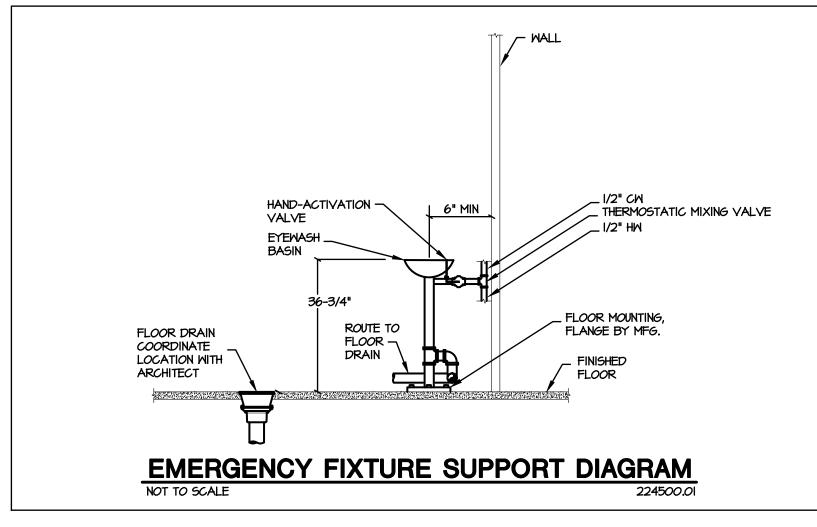
am

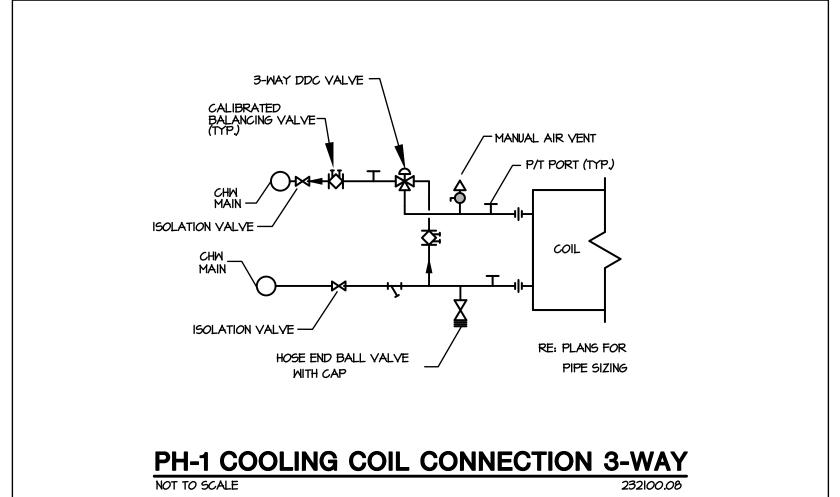

C dical Φ \geq schutz 0 D ā S 00 0 ersity 200 =

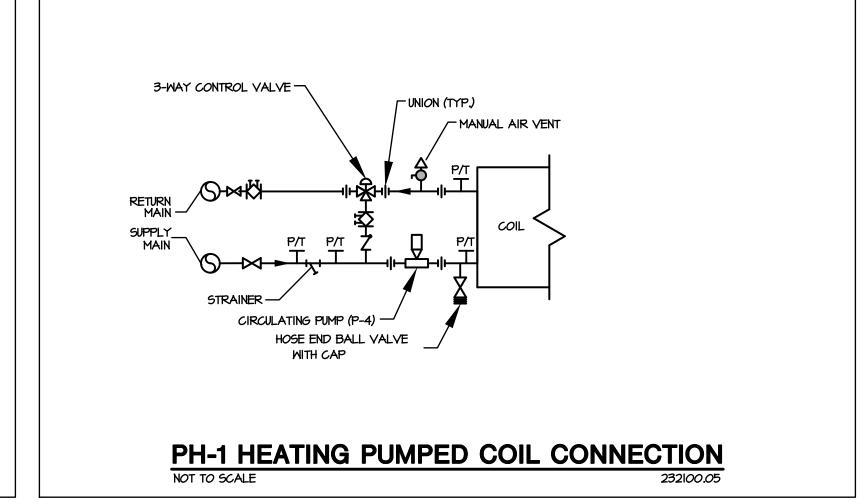

Issued for Construction 10/27/2023

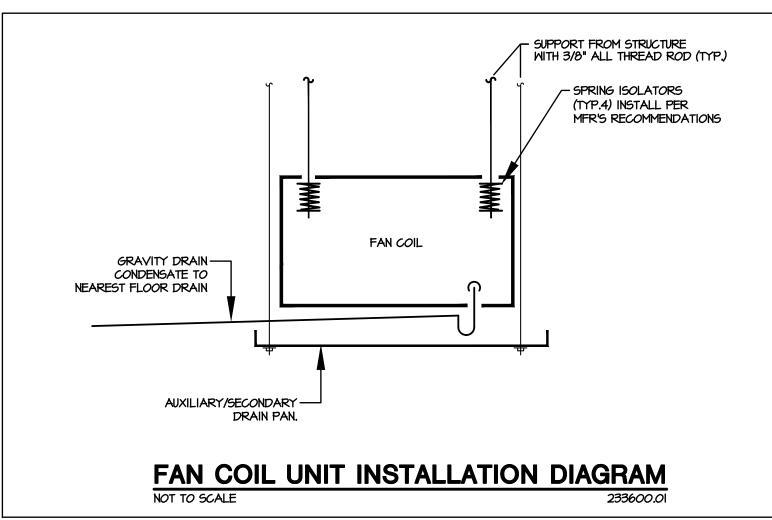

MEP JOB: 22318 DESIGNED: ADS

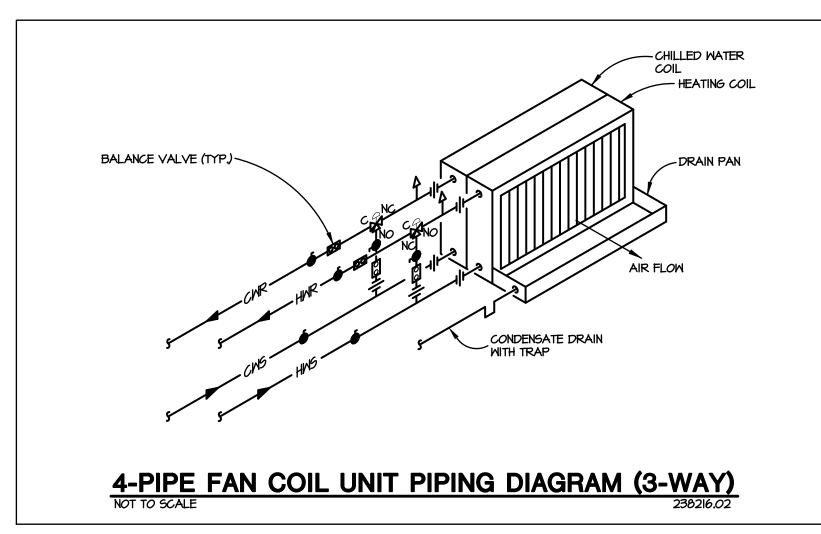

CHECKED: KVB

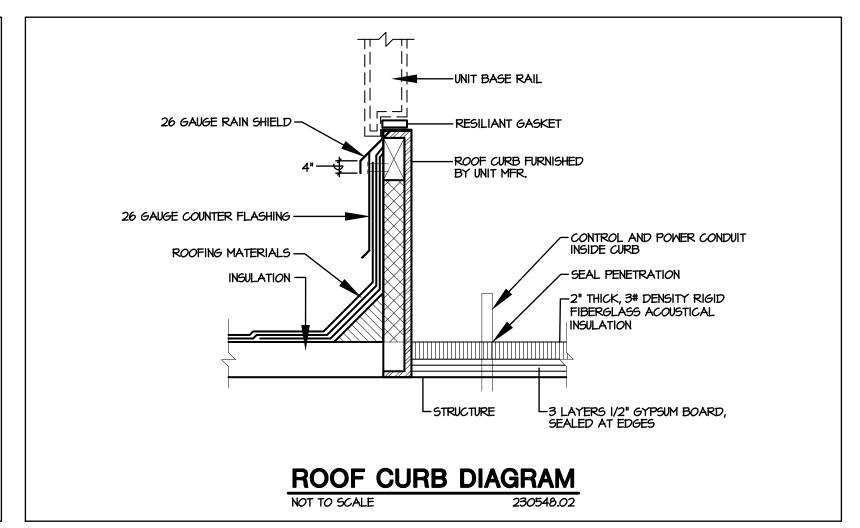

MECHANICAL SCHEDULES

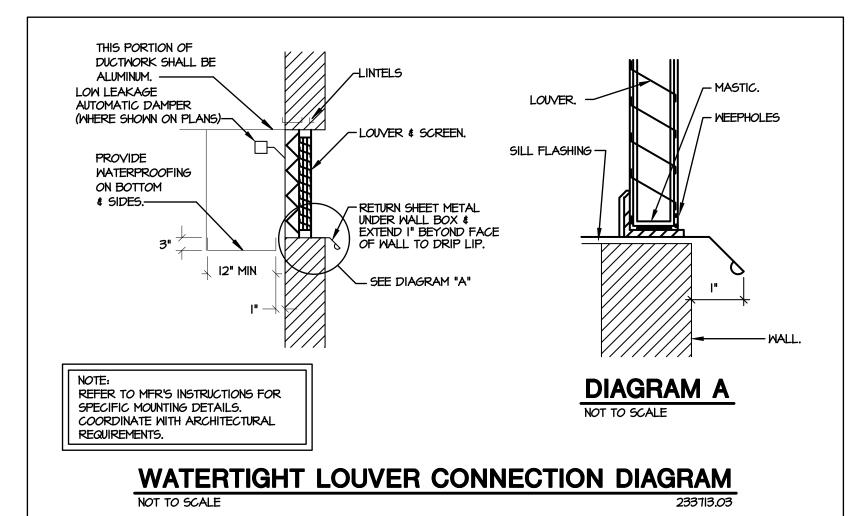




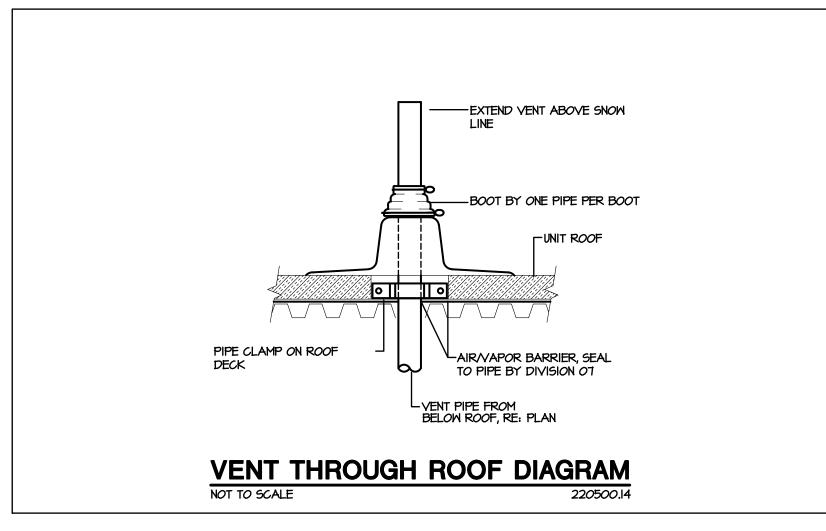


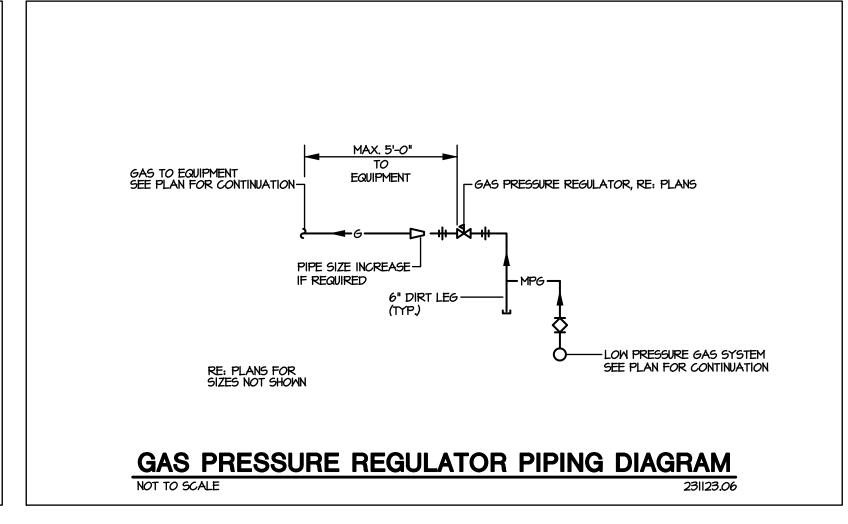


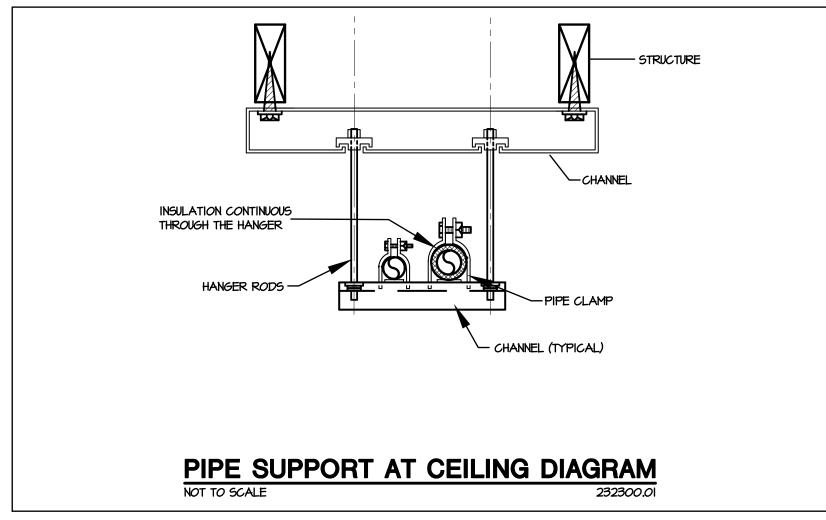


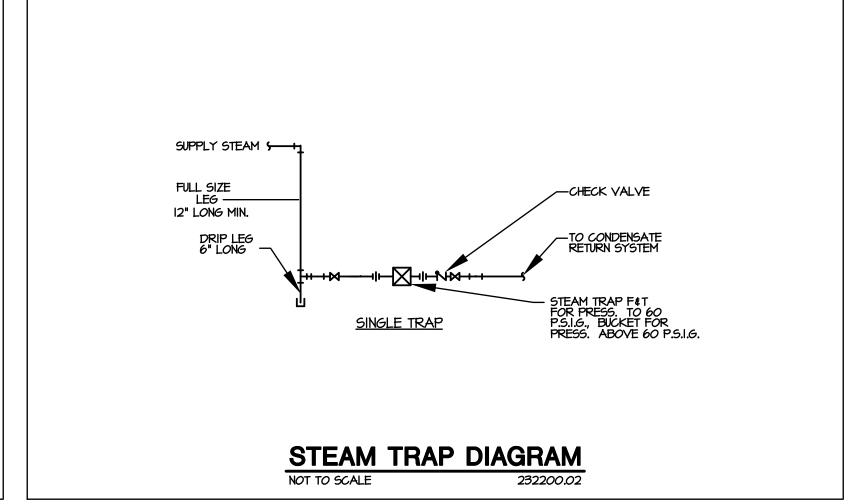


Campu Medical Anschutz 9 olora Irch 0 rersity 13243 East 23rd Av Aurora, CO 80045 PRF - Power HVAC erinatal Univ 100% CD

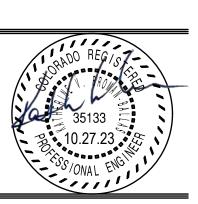

10/06/2023 Issued for Construction 10/27/2023

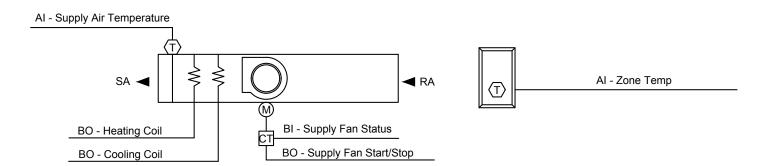

MEP JOB: 22318 DESIGNED: ADS CHECKED: KVB


MECHANICAL **DETAILS**



M-0.3


University of Colorado - Anschutz Medical Campus Perinatal Research Facility


13243 East 23rd Avenue
Aurora, CO 80045
PRF - Power HVAC Boiler Upgrades

ISSUE DATE
100% CD 10/06/2023
Issued for Construction 10/27/2023

P JOB: 22318 SIGNED: ADS

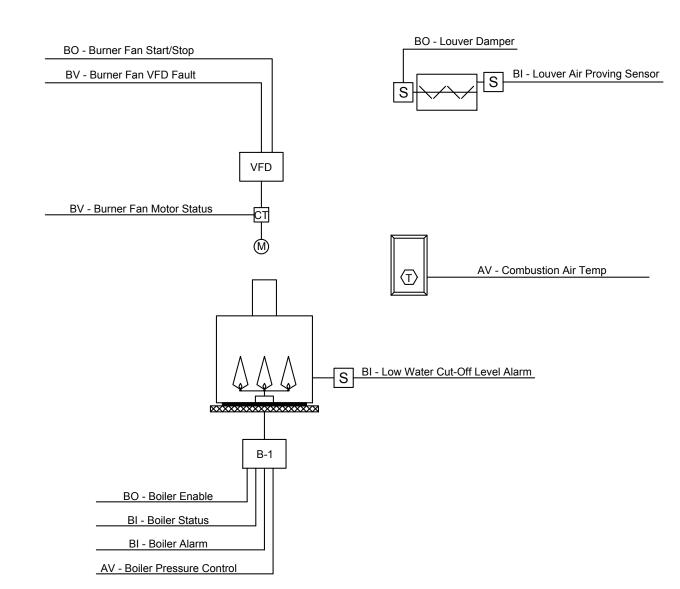
MECHANICAL DIAGRAMS

FCU-1 CONTROLS DIAGRAM

SEQUENCE OF OPERATIONS: FCU-1

GENERAL:

HEATING MODE: UPON A DROP IN ZONE TEMPERATURE BELOW 68 DEG. F ZONE HEATING SETPOINT, THE SUPPLY FAN AND HEATING COIL SHALL ENERGIZE TO MAINTAIN ZONE TEMPERATURE.


COOLING MODE: UPON AN INCREASE IN ZONE TEMPERATURE ABOVE 85 DEG. F (ADJ.) ZONE COOLING SETPOINT, THE SUPPLY FAN AND COOLING COIL SHALL ENERGIZE TO MAINTAIN ZONE TEMPERATURE.

ALARMS: ALARMS SHALL BE PROVIDED AS FOLLOWS:

- SUPPLY FAN FAILURE: COMMANDED ON, BUT THE STATUS IS OFF. - SUPPLY FAN IN HAND: COMMANDED OFF, BUT THE STATUS IS ON.

		POIN	TS L	IST: F	FCU-1					
		HARDWAF	RE POINTS			50	OFTWARE POI	NTS		SHOW ON
POINT NAME	Al	AO	ВІ	ВО	AV	BV	SCHED	TREND	ALARM	GRAPHIC
ZONE TEMPERATURE	Х							×		Х
ZONE COOLING SETPOINT					х			×		
ZONE HEATING SETPOINT					х			×		
COOLING COIL				×				×		х
HEATING COIL				×				×		х
SUPPLY FAN START/STOP				X				×		Х
SUPPLY FAN FAILURE									х	
SUPPLY FAN IN HAND									х	
SUPPLY AIR TEMPERATURE	Х							×		х

1 0 1 2 1 0 0 4 2

HEATING WATER PLANT CONTROL DIAGRAM

SCALE: NONE

SEQUENCE OF OPERATIONS: STEAM BOILER SYSTEM

BOILER(S) SHALL RUN SUBJECT TO ALL INTERNAL CONTROLS AND SAFETIES. THE FOLLOWING SAFETIES SHALL BE MONITORED BY THE BAS, ALL SETPOINTS ARE RECOMMENDED AND SHALL BE FIELD ADJUSTED DURING COMMISSIONING TO MEET THE REQUIREMENTS OF THE ACTUAL FIELD CONDITIONS.

THE BOILER SHALL BE REGULATED AND CONTROLLED BY THE BOILER OPERATOR. AN INTERNAL PRESSURE CONTROL SHALL SENSE THE STEAM PRESSURE AND TURN BOILER ON AND OFF ACCORDINGLY.

BEFORE THE BOILER TURNS ON, THE LOUVER DAMPER SHALL OPEN TO 100%. WHEN THE LOUVER AIR PROVING SENSOR SENSES AIRFLOW, THE BOILER SHALL ENABLE. WHENEVER THE BOILER TURNS OFF, THE LOUVER DAMPER SHALL CLOSE.

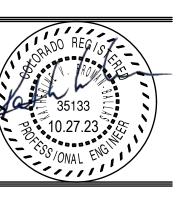
BOILER ALARMS SHALL BE PROVIDED AS FOLLOWS:

 BOILER SYSTEM ALARM LOW WATER CUT-OFF & FEEDER LEVEL ALARM

BOILER FAILURE, COMMANDED ON BUT STATUS OFF BOILER IN HAND, COMMANDED OFF BUT STATUS ON HIGH PRESSURE LIMIT.

POINTS LIST: HEATING WATER SYSTEM

		HARDWA	RE POINTS			50	FTWARE POI	NTS		SHOW ON
POINT NAME	Al	AO	ВІ	B0	AV	BV	SCHED	TREND	ALARM	GRAPHIC
BOILER PRESSURE CONTROL					х			×		Х
COMBUSTION AIR TEMPERATURE					х			×		Х
BOILER ALARM			×					×	×	х
BOILER STATUS			×					×		×
BURNER FAN MOTOR STATUS						×		×		×
BOILER ENABLE				×				×		×
BOILER SYSTEM ALARM									×	
LOW WATER CUT-OFF LEVEL ALARM			×						×	
BOILER FAILURE									×	
BOILER IN HAND									×	
LOUVER AIR PROVING SENSOR			×							×
LOWER DAMPER				×						×
BURNER FAN VFD FAULT						×		×	×	×
BURNER FAN START/STOP				×				×		×
TOTAL5	0	0	4	3	2	2	0	8	6	10


info@mep-eng.com www.mep-eng.com ampu Medical

Anschutz 9 olora $\overline{\mathcal{O}}$ o University

Issued for Construction 10/27/2023

PH-1 CONTROL MATRIX

CHECKED: KVB

M-0.5

SEQUENCE OF OPERATIONS: PH-1

PHU-I IS TO BE RUN MANUALLY AND WILL RUN CONTINUOUSLY. THE EXHAUST FAN IS HARDWIRED TO PHU-I SUPPLY FAN.

UPON FAN START UP, THE OUTSIDE AIR DAMPERS WILL OPEN 100% AND THE INLET VANES WILL BE ENABLED. THE INLET VANES WILL BE MODULATED BY A RECEIVER/CONTROLLER TO MAINTAIN DUCT STATIC.

THE SUPPLY FAN SHALL RUN CONTINUOUSLY AND THE OUTSIDE AIR DAMPER SHALL OPEN ANY TIME UNIT IS ENERGIZED AND SHALL CLOSE ANY TIME THE UNIT IS DE ENGERGIZED. OUTSIDE AIR DAMPER SHALL CLOSE FOR 4 SEC (ADJ.) AFTER THE SUPPLY FAN STOPS. THE SUPPLY FAN SPEED SHALL BE MODULATED TO MAINTAIN DISCHARGE AIR STATIC PRESSURE SETPOINT.

SAFETIES.

THE SUPPLY FAN SHALL RUN ANYTIME THE UNIT IS COMMANDED TO RUN. THE FAN SHALL HAVE A USER DEFINABLE ADJUSTABLE MINIMUM RUNTIME, UNLESS SHUTDOWN ON SAFETIES. THE SUPPLY FAN SHALL HAVE A 10 MINUTE (ADJ) DELAY ON STOP IN ORDER TO DRY OUT THE DIRECT EVAPORATIVE PRE-COOLING MEDIA.

EXHAUST FAN: THE EXHAUST FAN SHALL RUN WHENEVER THE SUPPLY FAN IS ENABLED, UNLESS SHUTDOWN ON

DIRECT EVAPORATIVE PRE-COOLING SECTION:

THE CONTROLLER SHALL MONITOR THE OUTSIDE AIR TEMPERATURE AND STAGE ON THE SPRAY PUMP ON RISING TEMPERATURE TO MAINTAIN ITS COOLING SETPOINT. THE SUPPLY FAN SHALL RUN FOR A USER DEFINABLE TIME (ADJ.) AFTER THE SPRAY PUMP/S HAVE DISABLED ON UNIT SHUTDOWN TO DRY OUT THE EVAPORATIVE MEDIA.

THE EVAPORATIVE PRE-COOLING SHALL BE ENABLED WHENEVER:

- OUTSIDE AIR TEMPERATURE IS GREATER THAN 75 DEG F (ADJ.)
- AND OUTSIDE AIR WET BULB IS LESS THAN 60 DEG F (ADJ.)
- AND THE ZONE TEMPERATURE IS ABOVE COOLING SETPOINT
- AND THE ZONE HUMIDITY IS LESS THAN 60% (ADJ.)
- AND THE SUPPLY FAN STATUS IS ON.

SPRAY PUMP CONTROL

EVAPORATIVE PRECOOLING SHALL BE COMPOSED OF 3 VERTICAL SECTIONS WITH PUMPS. THE MIDDLE SECTION SHALL BE STAGE I, THE OUTSIDE SECTION WILL BE STAGE 2 AND ALL THREE SECTIONS WILL

- STAGE I SHALL BE ENABLED ON CALL FOR PRE-COOLING.
- STAGE 2 SHALL BE ENABLED WHEN DISCHARGE AIR TEMPERATURE IS MORE THAN 3 DEG F (ADJ.) ABOVE SETPOINT FOR 10 MINS (ADJ.)
- STAGE 3 SHALL BE ENABLED WHEN DISCHARGE AIR TEMPERATURE IS MORE THAN 3 DEG F (ADJ.) ABOVE SETPOINT FOR 30 MINS (ADJ.).

SUMP CONTROL

THE CONTROLLER SHALL DRAIN AND FILL THE SUMP AS FOLLOWS:

FREEZE PROTECTION:

IF THE OUTSIDE AIR TEMPERATURE DROPS BELOW 40 DEG F (ADJ.), THE EVAPORATIVE COOLER SUMP SHALL OPEN THE DRAIN VALVE AND CLOSE THE FILL VALVE. IF THE OUTSIDE AIR TEMPERATURE RISES ABOVE 55 DEG F (ADJ.), THE CONTROLLER SHALL ACTIVATE THE FILL VALVE AND CLOSE THE DRAIN

SCHEDULED FLUSH AND FILL:

A FLUSH CYCLE SHALL OCCUR EVERY 24HR (ADJ.) AT A USER DEFINABLE TIME OF DAY (DEFAULT 2:00AM). DURING CYCLE, THE SPRAY PUMP SHALL STOP, THE FILL VALVE SHALL CLOSE AND THE DRAIN VALVE SHALL OPEN FOR 60 MINUTES (ADJ.). AFTER THE CYCLE TIME IS COMPLETE, THE DRAIN VALVE SHALL CLOSE, THE FILL VALVE SHALL OPEN.

A BLEED CYCLE SHALL BE INITIATED IF CONDUCTIVITY PROBE LOCATED IN THE SUMP MEASURES 1200 PPM. CLOSE DRAIN VALVE AT 900 PPM. LOCATE BLEED VALVE AS GRAVITY FEED FROM THE SUMP AND NOT OFF THE DISCHARGE OF THE PUMPS.

IF WATER LEVEL IS TOO HIGH, SUMP FILL VALVE SHALL CLOSE.

HEAT RECOVERY VENTILATOR CORE: THE CONTROLLER SHALL MODULATE THE BYPASS DAMPER FOR ENERGY RECOVERY AS FOLLOWS:

COOLING RECOVERY MODE: THE CONTROLLER SHALL MEASURE THE DISCHARGE AIR TEMPERATURE AND MODULATE THE BYPASS

DAMPER CLOSED TO MAINTAIN A SETPOINT 2 DEG F (ADJ.) LESS THAN THE UNIT SUPPLY AIR TEMPERATURE SETPOINT. THE BYPASS DAMPER SHALL CLOSE FOR COOLING RECOVERY WHENEVER:

- UNIT ENTERING EXHAUST AIR TEMPERATURE IS 5 DEG F (ADJ.) OR MORE BELOW THE OUTSIDE AIR TEMPERATURE.
- AND THE UNIT IS IN COOLING MODE
- AND THE SUPPLY FAN IS ON.

HEATING RECOVERY MODE:

THE CONTROLLER SHALL MEASURE THE DISCHARGE AIR TEMPERATURE AND MODULATE THE BYPASS DAMPER CLOSED TO MAINTAIN A SETPOINT 2 DEG F (ADJ.) GREATER THAN THE UNIT SUPPLY AIR TEMPERATURE SETPOINT. THE BYPASS DAMPER SHALL CLOSE FOR HEAT RECOVERY WHENEVER:

- UNIT ENTERING EXHAUST AIR TEMPERATURE IS 5 DEG F (ADJ.) OR MORE ABOVE THE OUTSIDE AIR TEMPERATURE.
- AND THE UNIT IS IN HEATING MODE
- AND THE SUPPLY FAN IS ON.

THE BYPASS DAMPER WILL OPEN WHENEVER AIR HEAT RECOVERY IS DISABLED.

COOLING COIL VALVE: THE CONTROLLER SHALL MEASURE THE DISCHARGE AIR TEMPERATURE AND MODULATE THE COOLING COIL 3-WAY VALVE TO MAINTAIN ITS COOLING SETPOINT. THE COOLING SHALL BE ENABLED WHEN:

- OUTSIDE AIR TEMPERATURE IS GREATER THAN 65 DEG F (ADJ.)
- AND THE SUPPLY AIR TEMPERATURE IS ABOVE COOLING SETPOINT
- AND THE FAN STATUS IS ON.

THE COOLING COIL VALVE SHALL OPEN TO 50% (ADJ.) WHENEVER THE FREEZESTAT IS ON.

THE CONTROLLER SHALL MEASURE THE DISCHARGE AIR TEMPERATURE AND MODULATE THE HEATING COIL 3-WAY VALVE TO MAINTAIN ITS HEATING SETPOINT. THE HEATING SHALL BE ENABLED WHENEVER:

- OUTSIDE AIR TEMPERATURE IS LESS THAN 65 DEG F (ADJ.)
- AND THE SUPPLY AIR TEMPERATURE IS BELOW HEATING SETPOINT
- AND THE FAN STATUS IS ON.

THE HEATING COIL VALVE SHALL OPEN TO 100% (ADJ.) WHENEVER THE FREEZESTAT IS ON.

HEATING COIL PUMP:

- THE RECIRCULATION PUMP P-4 SHALL RUN WHENEVER: - OUTSIDE AIR TEMPERATURE IS LESS THAN 55 DEG F (ADJ.)
- AND THE HEATING COIL VALVE IS ENABLED
- OR THE FREEZESTAT IS ON.

FILTER DIFFERENTIAL PRESSURE MONITOR:

- THE CONTROLLER SHALL MONITOR THE DIFFERENTIAL PRESSURE ACROSS ACROSS ALL OF THE FOLLOWING FILTER BANKS:
- PREFILTER
- INTERMEDIATE FILTER
- FINAL FILTER
- EXHAUST PRE-FILTER
- EXHAUST HEPA FILTER BANK

- HEAT EXCHANGER OUTSIDE AIR FILTER
- HEAT EXCHANGER EXHAUST AIR FILTER

PERIODIC FILTER CLEANING:

THE UNIT SHALL HAVE NOTIFICATIONS TO CHANGE OUTSIDE AIR AND EXHAUST AIR FILTERS AT RECOMMENDED INTERVALS. THE EXHAUST FAN SHALL MODULATE TO COMPENSATE FOR FILTER

DISCHARGE AIR TEMPERATURE:

ALARMS SHALL BE PROVIDED AS FOLLOWS:

- HIGH DISCHARGE AIR TEMP: IF DISCHARGE AIR TEMPERATURE IS GREATER THAN IO DEGREES ABOVE
- LOW DISCHARGE AIR TEMP: IF THE DISCHARGE AIR TEMPERATURE IS LESS THAN IO DEGREES ABOVE

SMOKE DETECTOR SHUTDOWN:

THE UNIT SHALL SHUT DOWN IN RESPONSE TO A SIGNAL FROM THE SMOKE DETECTOR IN EITHER THE SUPPLY DUCT OR EXHAUST DUCT, INDICATING THE PRESENCE OF SMOKE. THE EXHAUST FAN SHALL RUN FULL SPEED. THE SMOKE DETECTOR SHALL BE INTERLOCKED TO THE UNIT THROUGH THE DRY CONTACTS OF THE SMOKE DETECTOR. A MANUAL RESET OF THE SMOKE DETECTOR SHALL BE REQUIRED TO RESTART THE UNIT.

	POI		LIST:	AHU	-1, Al-					
		HARDWA	ARE POINTS			50	FTWARE POII	NTS	T	SHOW ON
POINT NAME	Al	AO	BI	ВО	AV	BV	SCHED	TREND	ALARM	GRAPHIC
ENTERING EXHAUST AIR TEMP	×							×		×
FINAL FILTER DIFFERENTIAL PRESSURE	×							×		
EXHAUST FILTER DIFFERENTIAL PRESSURE	×							×		
HEAT WHEEL DISCHARGE AIR TEMP	×							X		X
OUTSIDE AIR TEMP	×							X		X
EVAPORATIVE TEMPERATURE	×							×		X
OUTSIDE AIR HUMIDITY	×							×		X
PRE-FILTER DIFFERENTIAL PRESSURE	×							×		
LEAVING EXHAUST AIR TEMP	×							×		X
NTERMEDIATE FILTER DIFFERENTIAL PRESSURE	×							×		
DISCHARGE AIR TEMP	×							×		×
COOLING VALVE		×						×		×
SPRAY PUMP I START/STOP				Х				×		Х
SPRAY PUMP 2 START/STOP				Х				×		Х
SUMP DRAIN VALVE				×				х		Х
SUMP FILL VALVE				×				×		×
CONDUCTIVITY SENSOR	×			-				×		×
HIGH WATER LEVEL ALARM			×					×	×	×
SPRAY PUMP I STATUS			×					×		×
SPRAY PUMP 2 STATUS			×					×		×
			^							
HEATING VALVE		X						X		X
EXHAUST FAN I STATUS			X					×		×
EXHAUST FAN 2 STATUS			X					X		X
EXHAUST FAN 3 STATUS			X					X		Х
FREEZESTAT			X					×	X	X
SUPPLY FAN STATIC PRESSURE	×							×		
SUPPLY FAN I STATUS			×					×		×
SUPPLY FAN 2 STATUS			Х					×		Х
SUPPLY FAN 3 STATUS			×					×		Х
EXHAUST FAN VFD FAULT						Х		X	Х	Х
SUPPLY FAN VFD FAULT						×		×	X	Х
HEATING COIL PUMP STATUS			X					X		Х
OUTSIDE AIR DAMPER STATUS			X					×		×
EXHAUST AIR SMOKE DETECTOR			X					×	×	х
SUPPLY AIR SMOKE DETECTOR			×					×	X	×
EXHAUST FAN START/STOP				×				×		×
HEAT EXCHANGER FACE DAMPER				X				X		X
HEAT EXCHANGER BYPAGG DAMPER				X				X		X
SUPPLY FAN VFD SPEED		X						×		X
EXHAUST FAN VFD SPEED		X						×		×
HEATING COIL PUMP START/STOP				×				×		X
OUTSIDE AIR DAMPER				×				×		×
SUPPLY FAN START/STOP				×				×		×
SUPPLY AIR TEMP SETPOINT					х			×		Х
EXHAUST FAN FAILURE									×	Х
SCHEDULE							×			
EXHAUST FAN IN HAND									×	
EXHAUST FAN RUNTIME EXCEEDED					1				×	х
HEAT COIL PUMP FAILURE									×	
HEATING COIL PUMP RUNTIME EXCEEDED									×	
HIGH SUPPLY AIR TEMP									×	
LOW SUPPLY AIR TEMP					<u> </u>				×	
OUTSIDE AIR DAMPER FAILURE									X	
SUPPLY FAN FAILURE									X	
SUPPLY FAN IN HAND									X	
SUPPLY FAN RUNTIME EXCEEDED					<u> </u>				X	
INDOOR HUMIDITY	×							×	×	Х
SUPPLY DUCT STATIC PRESSURE	×								×	
TOTALS	15	4	14	10	1	2	ı	45	19	42

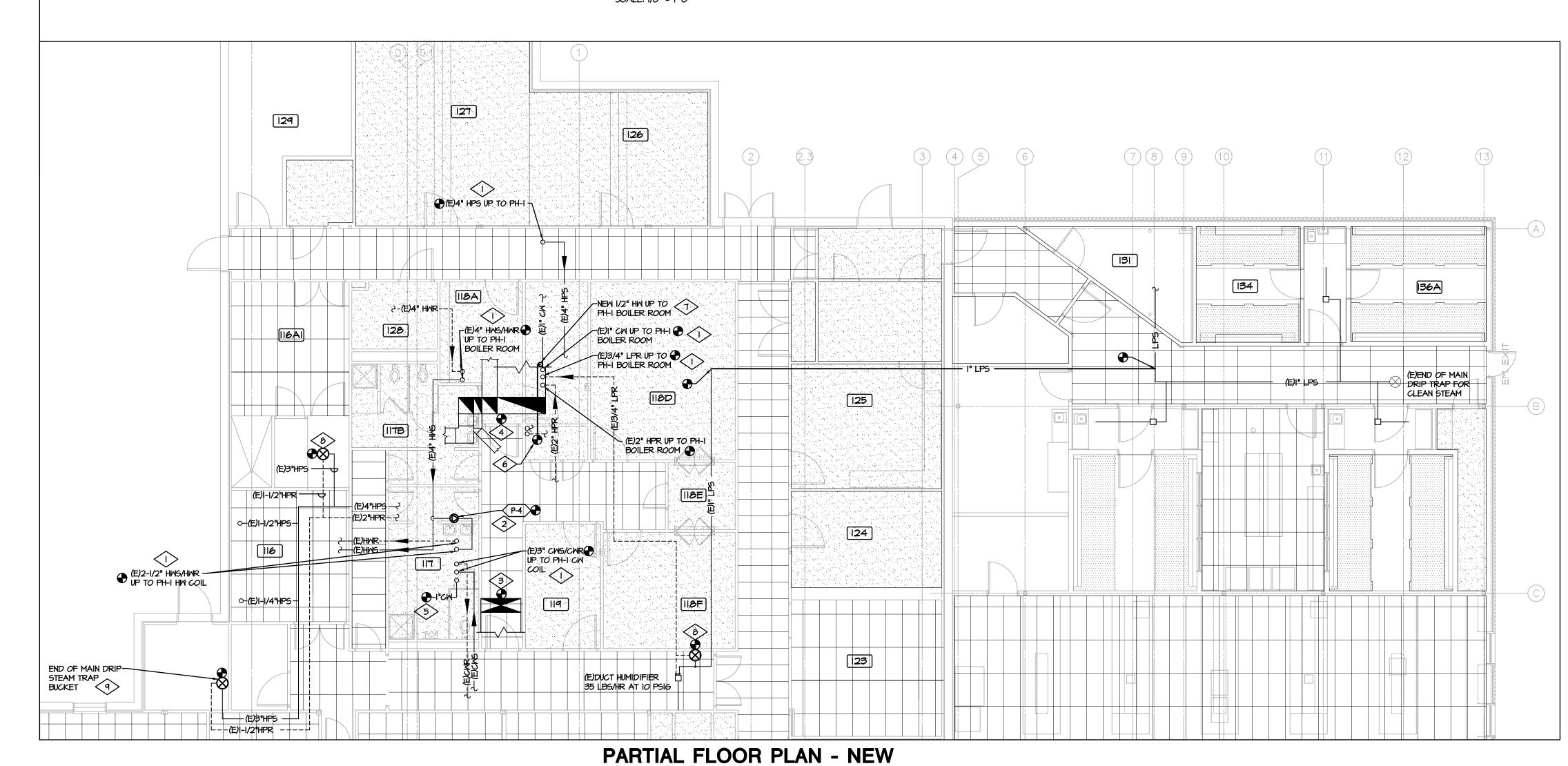
AI - Exhaust Filter Differential Pressure

PH-1 CONTROL DIAGRAM

nd

am C ā Medica schutz 0 O <u>r</u> C 00 0 er

10/06/2023 Issued for Construction 10/27/2023


∠

MEP JOB: 22318 DESIGNED: ADS

CHECKED: KVB

PH-1 CONTROL

SCALE: 1/8" = 1'-0"

MECHANICAL GENERAL NOTES

- I. THE FIRST NAMED MANUFACTURER'S MATERIAL OR EQUIPMENT LISTED IN SCHEDULES OR ON DRAWINGS ARE THE BASIS OF DESIGN, OTHER ACCEPTABLE MANUFACTURERS MAY BE USED, INCLUDE THE COST OF ANY CHANGE IN CONSTRUCTION REQUIRED BY THEIR USE.
- 2. EQUIPMENT SHALL CONFORM TO STATE AND/OR LOCAL CODES, ORDINANCES, AND ENERGY CONSERVATION STANDARDS.
- IT IS THE INTENT OF THESE DRAWINGS AND SPECIFICATIONS TO RESULT IN A COMPLETE MECHANICAL INSTALLATION IN COMPLETE ACCORDANCE WITH ALL APPLICABLE LOCAL CODES AND ORDINANCES.
- 4. DRAWINGS ARE DIAGRAMMATIC IN CHARACTER AND DO NOT NECESSARILY INDICATE EVERY REQUIRED PIPE, OFFSET, TRANSITION, ETC. ITEMS NOT SPECIFICALLY MENTIONED IN THE SPECIFICATION OR NOTED ON THE DRAWINGS, BUT WHICH ARE NECESSARY TO MAKE A COMPLETE WORKING INSTALLATION, SHALL BE INCLUDED.
- 5. DRAWINGS AND SPECIFICATIONS ARE COMPLEMENTARY. WHATEVER IS CALLED FOR IN EITHER IS BINDING AS THOUGH CALLED FOR IN BOTH. IF THERE IS A CONFLICT IN THE CONTRACT DOCUMENTS, THE MORE STRINGENT AND COSTLY DESIGN SHALL BE SELECTED FOR BIDDING PURPOSES. THE CONTRACTOR SHALL IMMEDIATELY PRESENT THE CONFLICT FOUND IN THE CONTRACT DOCUMENTS TO THE ARCHITECT/ENGINEER FOR RESOLUTION.
- 6. DRAWINGS SHALL NOT BE SCALED FOR MEASUREMENTS OR USED AS SHOP DRAWINGS. WHERE DRAWINGS ARE REQUIRED FOR THESE PURPOSES, THE CONTRACTOR SHALL TAKE THE NECESSARY FIELD MEASUREMENTS AND PREPARE THE DRAWINGS.
- 7. BEFORE ANY WORK IS INSTALLED, DETERMINE THAT EQUIPMENT WILL PROPERLY FIT THE SPACE, THAT REQUIRED CLEARANCES CAN BE MAINTAINED AND THAT EQUIPMENT CAN BE LOCATED WITHOUT INTERFERENCES BETWEEN SYSTEMS, WITH STRUCTURAL ELEMENTS, OR WITH THE WORK OF OTHER TRADES.
- ISOLATE ALL SUPPLY AND RETURN PIPING SERVING PENTHOUSE UNIT . CUT AND CAP PIPING AT ROOF PENETRATION FOR PENTHOUSE UNIT REMOVAL. (TYPICAL ALL PIPE CONNECTIONS.)

O DRAWING NOTES (DEMO)

I. DISCONNECT EXISTING HPS PIPING FROM UNIT.

EXACT LOCATION.

- DISCONNECT EXISTING 2-I/2" HMS/HMR PIPING FROM UNIT COIL. PREPARE PIPING FOR RECONNECTION TO NEW UNIT.
- DISCONNECT EXISTING 3" CHWS/CHWR PIPING FROM UNIT COIL. PREPARE PIPING FOR RECONNECTION TO NEW UNIT.
- 4. DISCONNECT EXISTING 4" HWS/HWR PIPE DISTRIBUTION PIPING FROM UNIT. PREPARE PIPING FOR RECONNECTION.
- 5. EXISTING 1/2" CM AND HM SERVING MOP SINK. CONTRACTOR TO FIELD VERIFY
- 6. DISCONNECT EXISTING HPR, LPR AND I" CM PIPING TO UNIT.
- 7. DISCONNECT EXISTING SUPPLY AND EXHAUST AIR DUCT FROM UNIT ABOVE, PREPARE FOR RECONNECTION TO NEW UNIT.
- 8. DEMO EXISTING CIRCULATING PUMP SERVING HOT WATER COIL. PREPARE EXISTING PIPING FOR RECONNECTION.
- 9. DEMO EXISTING LPS STEAM PIPING AS SHOWN BACK TO PENTHOUSE.
- IO. REMOVE EXISTING STEAM TRAP. PREPARE PIPING FOR REPLACEMENT.

♦ DRAWING NOTES

- I. EXTEND AND RECONNECT EXISTING PIPING UP TO NEW PENTHOUSE CONNECTIONS.
- 2. PROVIDE NEW CIRCULATION PUMP.
- 3. PROVIDE NEW TRANSITION FROM EXISTING 58"x20" SUPPLY DUCT TO 126"x24" UNIT SUPPLY OPENING. EXPAND METAL OVER OPENING INSIDE UNIT.
- PROVIDE NEW TRANSITION FROM EXISTING EXHAUST DUCTS TO 126"x24" EXHAUST AIR OPENING IN UNIT. EXPAND METAL OVER OPENING INSIDE UNIT.
- 5. PROVIDE NEW I" CW LINE UP TO NEW PH-I IN PIPE CHASE. ROUTE TO NEW EVAPORATIVE COOLER. PROVIDE WITH SHUTOFF VALVE AND ACCESS PANEL.
- 6. CONNECT NEW 1/2" HW TO EXISTING 1/2" HW AS SHOWN.
- 7. ROUTE NEW 1/2" HW FROM EXISTING MOP SINK CONNECTION UP TO NEW PENTHOUSE TO
- SERVE EYEMASH STATION.

 8. REPLACE EXISTING STEAM TRAP BUCKET WITH NEW. EQUAL TO ARMSTRONG MODEL 800
- 1. PROVIDE NEW END OF MAIN STEAM TRAP BUCKET FOR HIGH PRESSURE STEAM (75 PSI). EQUAL TO ARMSTRONG MODEL 816.

RIES.

MEP JOB: 22318
DESIGNED: ADS
CHECKED: KVB

ISSUE 100% CD

10/06/2023

Issued for Construction 10/27/2023

MECHANICAL FLOOR PLAN

M-1.0

niversity of Colorado - Anschutz Medica erinatal Research Facility

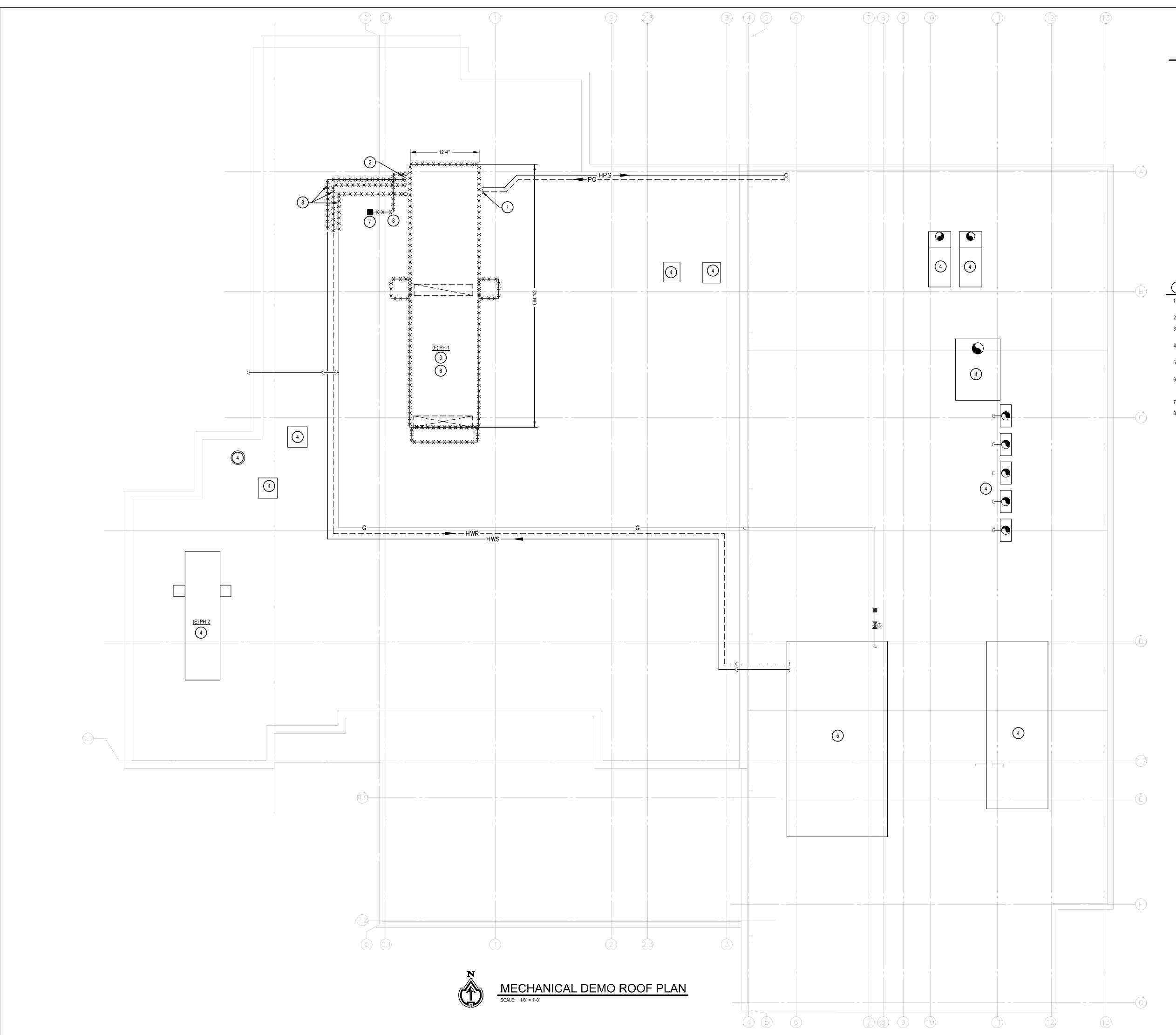
ENGINEERING INC.

CLIENT CENTRIC CONSULTING

6402 S. Troy Circle, Suite 100 (W) 303.936.1633

Centennial, CO 80111 (F) 303.934.3299

www.mep-eng.com


info@mep-eng.com

0

am

C

a

MECHANICAL GENERAL NOTES

- THE FIRST NAMED MANUFACTURER'S MATERIAL OR EQUIPMENT LISTED IN SCHEDULES OR ON DRAWINGS ARE THE BASIS OF DESIGN. OTHER ACCEPTABLE MANUFACTURERS MAY BE USED, INCLUDE THE COST OF ANY CHANGE IN CONSTRUCTION REQUIRED BY THEIR USE
- 2. EQUIPMENT SHALL CONFORM TO STATE AND/OR LOCAL CODES, ORDINANCES, AND ENERGY CONSERVATION STANDARDS.
- 3. IT IS THE INTENT OF THESE DRAWINGS AND SPECIFICATIONS TO RESULT IN A COMPLETE MECHANICAL INSTALLATION IN COMPLETE ACCORDANCE WITH ALL APPLICABLE LOCAL CODES AND ORDINANCES.
- 4. DRAWINGS ARE DIAGRAMMATIC IN CHARACTER AND DO NOT NECESSARILY INDICATE EVERY REQUIRED PIPE, OFFSET, TRANSITION, ETC. ITEMS NOT SPECIFICALLY MENTIONED IN THE SPECIFICATION OR NOTED ON THE DRAWINGS, BUT WHICH ARE NECESSARY TO MAKE A COMPLETE WORKING INSTALLATION, SHALL BE INCLUDED.
- 5. DRAWINGS AND SPECIFICATIONS ARE COMPLEMENTARY. WHATEVER IS CALLED FOR IN EITHER IS BINDING AS THOUGH CALLED FOR IN BOTH. IF THERE IS A CONFLICT IN THE CONTRACT DOCUMENTS, THE MORE STRINGENT AND COSTLY DESIGN SHALL BE SELECTED FOR BIDDING PURPOSES. THE CONTRACTOR SHALL IMMEDIATELY PRESENT THE CONFLICT FOUND IN THE CONTRACT DOCUMENTS TO THE ARCHITECT/ENGINEER FOR RESOLUTION.
- 6. DRAWINGS SHALL NOT BE SCALED FOR MEASUREMENTS OR USED AS SHOP DRAWINGS. WHERE DRAWINGS ARE REQUIRED FOR THESE PURPOSES, THE CONTRACTOR SHALL TAKE THE NECESSARY FIELD MEASUREMENTS AND PREPARE THE DRAWINGS.
- 7. BEFORE ANY WORK IS INSTALLED, DETERMINE THAT EQUIPMENT WILL PROPERLY FIT THE SPACE, THAT REQUIRED CLEARANCES CAN BE MAINTAINED AND THAT EQUIPMENT CAN BE LOCATED WITHOUT INTERFERENCES BETWEEN SYSTEMS, WITH STRUCTURAL ELEMENTS, OR WITH THE WORK OF OTHER TRADES.

O DRAWING NOTES (DEMO)

CUT AND CAP EXISTING HPS AND PUMPED CONDENSATE PIPING AT UNIT. PREPARE PIPING FOR

NEW CONNECTION

OF THE PROPERTY OF THE

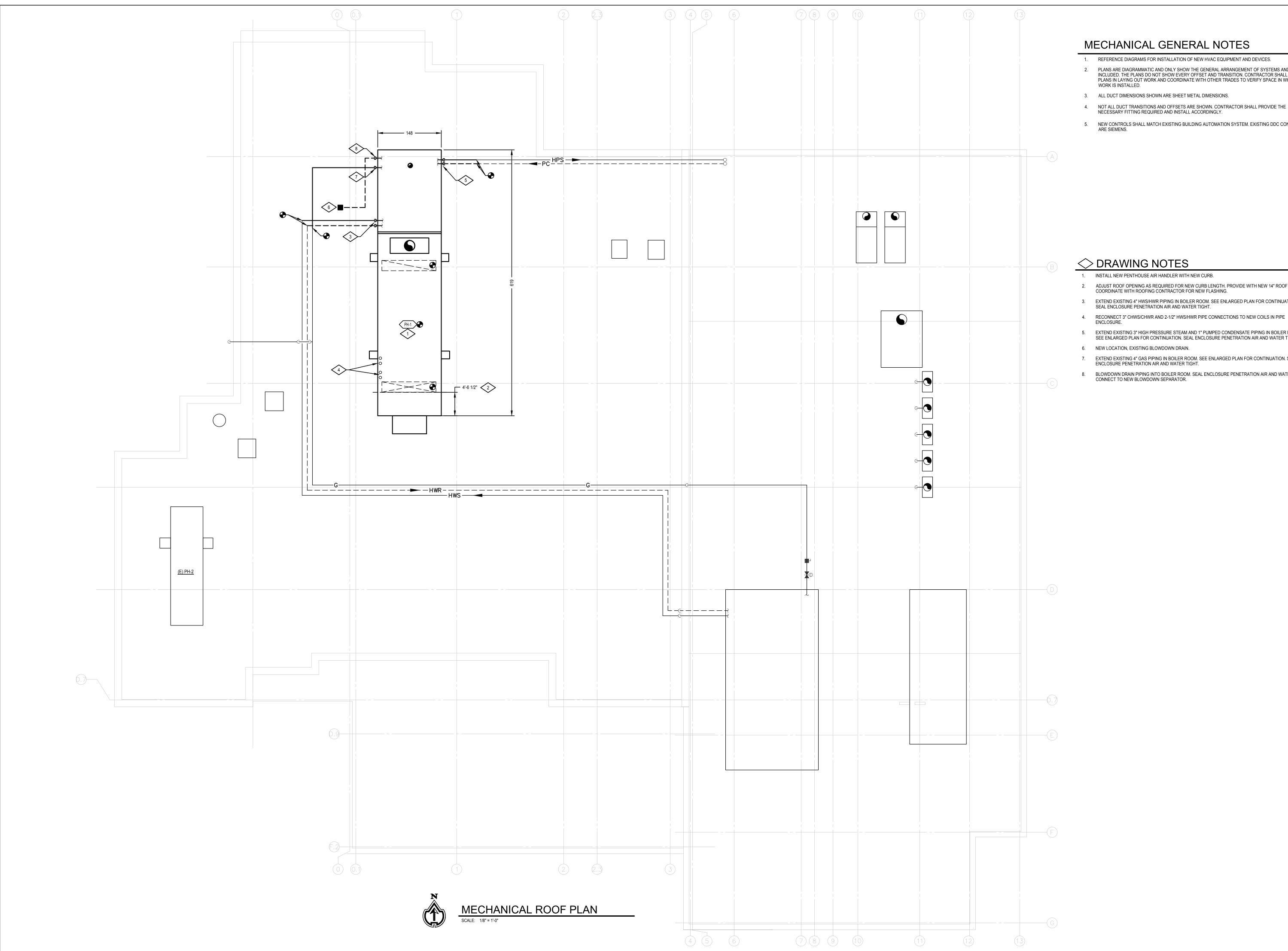
- 2. CUT AND CAP EXISTING HWS/HWR PIPING FROM UNIT. PREPARE PIPING FOR NEW CONNECTION.
- DISCONNECT ALL EXISTING CONNECTIONS FROM UNIT AND DEMO PENTHOUSE UNIT AND CURB IN ITS ENTIRETY. SALVAGE EXISTING BOILER ROOM EQUIPMENT TO BE REUSED.
- 4. EXISTING EQUIPMENT. NO WORK TO BE PERFORMED. SHOWN FOR COORDINATION PURPOSES ONLY.
- EXISTING HYDRONIC BOILER SYSTEM ROOM. NO WORK TO BE PERFORMED. SHOWN FOR COORDINATION PURPOSES ONLY.
- CONTRACTOR SHALL OBTAIN ALL EXISTING TEMPERATURE SETPOINTS, HOUR OF OPERATION SETPOINTS, OCCUPIED AND UNOCCUPIED SETPOINTS, AND ANY AND ALL TREND DATA FROM EXISTING BAS FOR FUTURE COORDINATION IF REQUIRED.
- 7. REMOVE AND RETAIN EXISTING BLOWDOWN DRAIN FOR REUSE IN NEW WORK.
- 8. REMOVE PIPING TO EXTENT INDICATED AND PREPARE FOR NEW CONNECTIONS.

info@mep-eng.com www.mep-eng.com

nd

am

University of Colorado - Anschutz Medical Perinatal Research Facility


| ISSUE | DATE | 10/06/2023 | Issued for Construction | 10/27/2023 |

JOB: 22318

MECHANICAL

MD-2.0

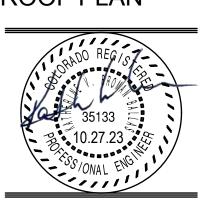
MECHANICAL GENERAL NOTES

- 1. REFERENCE DIAGRAMS FOR INSTALLATION OF NEW HVAC EQUIPMENT AND DEVICES. PLANS ARE DIAGRAMMATIC AND ONLY SHOW THE GENERAL ARRANGEMENT OF SYSTEMS AND WORK INCLUDED. THE PLANS DO NOT SHOW EVERY OFFSET AND TRANSITION. CONTRACTOR SHALL FOLLOW PLANS IN LAYING OUT WORK AND COORDINATE WITH OTHER TRADES TO VERIFY SPACE IN WHICH WORK IS INSTALLED.
- 4. NOT ALL DUCT TRANSITIONS AND OFFSETS ARE SHOWN. CONTRACTOR SHALL PROVIDE THE NECESSARY FITTING REQUIRED AND INSTALL ACCORDINGLY.
- 5. NEW CONTROLS SHALL MATCH EXISTING BUILDING AUTOMATION SYSTEM. EXISTING DDC CONTROLS

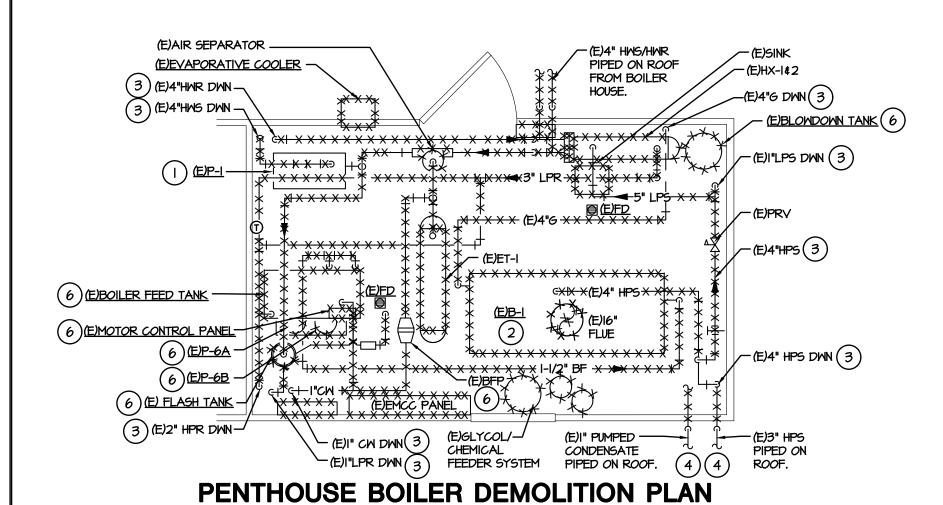
- ADJUST ROOF OPENING AS REQUIRED FOR NEW CURB LENGTH. PROVIDE WITH NEW 14" ROOF CURB. COORDINATE WITH ROOFING CONTRACTOR FOR NEW FLASHING.
- EXTEND EXISTING 4" HWS/HWR PIPING IN BOILER ROOM. SEE ENLARGED PLAN FOR CONTINUATION. SEAL ENCLOSURE PENETRATION AIR AND WATER TIGHT.
- 5. EXTEND EXISTING 3" HIGH PRESSURE STEAM AND 1" PUMPED CONDENSATE PIPING IN BOILER ROOM. SEE ENLARGED PLAN FOR CONTINUATION. SEAL ENCLOSURE PENETRATION AIR AND WATER TIGHT.
- 7. EXTEND EXISTING 4" GAS PIPING IN BOILER ROOM. SEE ENLARGED PLAN FOR CONTINUATION. SEAL ENCLOSURE PENETRATION AIR AND WATER TIGHT.
- 8. BLOWDOWN DRAIN PIPING INTO BOILER ROOM. SEAL ENCLOSURE PENETRATION AIR AND WATER TIGHT.

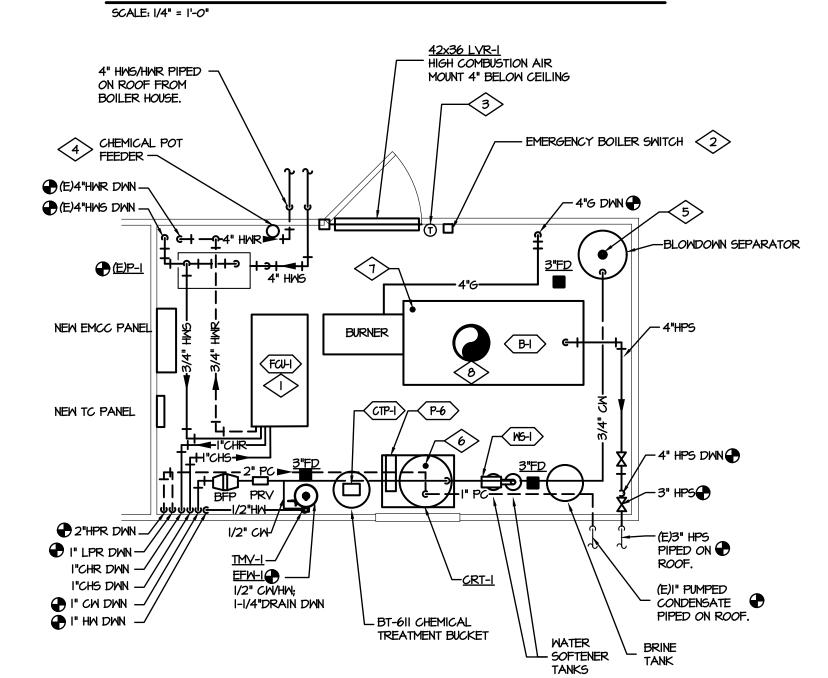
info@mep-eng.com www.mep-eng.com

ampu


Medical Anschutz 00 olora O University Perinatal

 100% CD
 10/06/2023

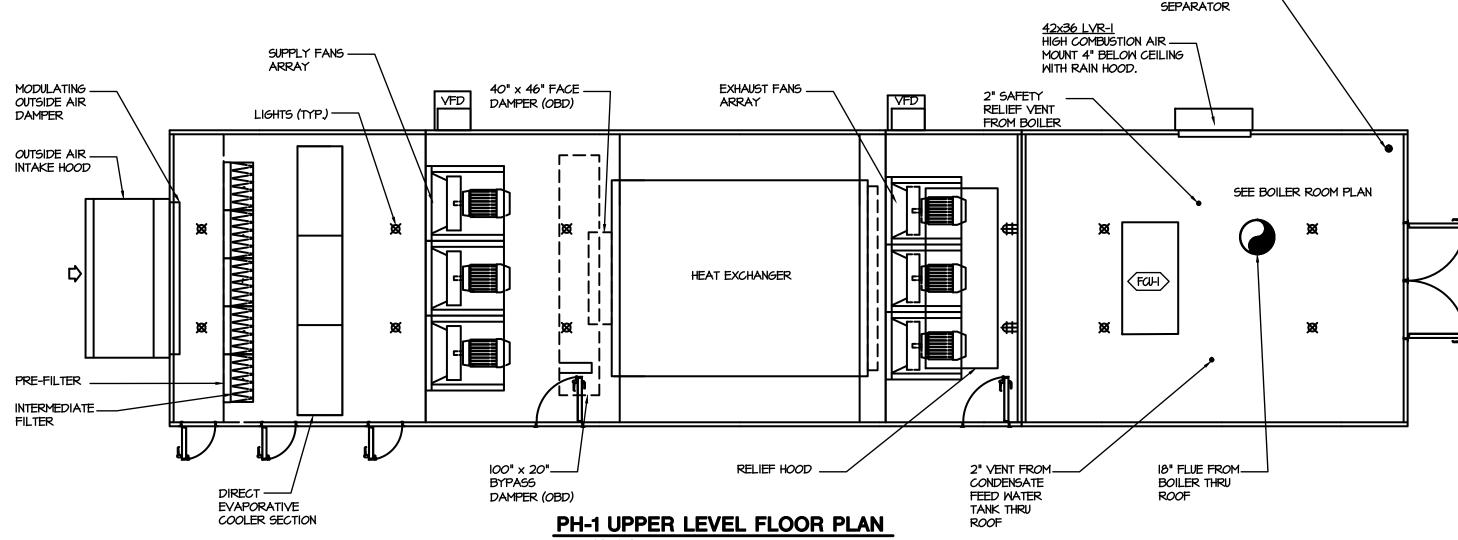

 Issued for Construction
 10/27/2023

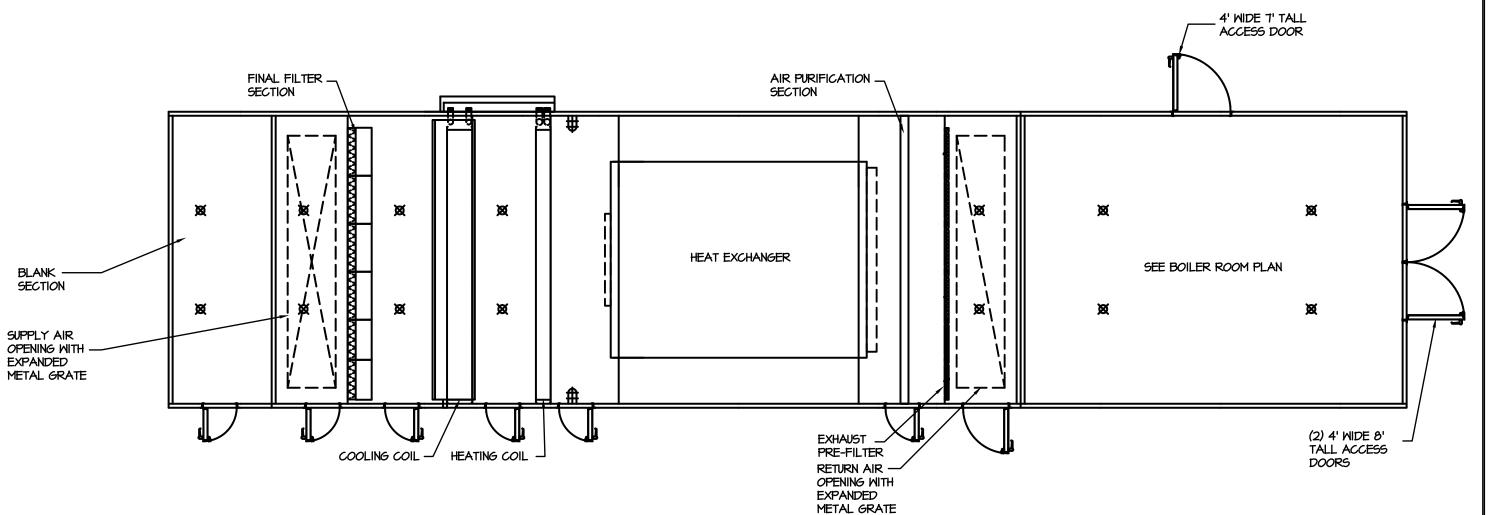

MECHANICAL **ROOF PLAN**

CHECKED: KVB

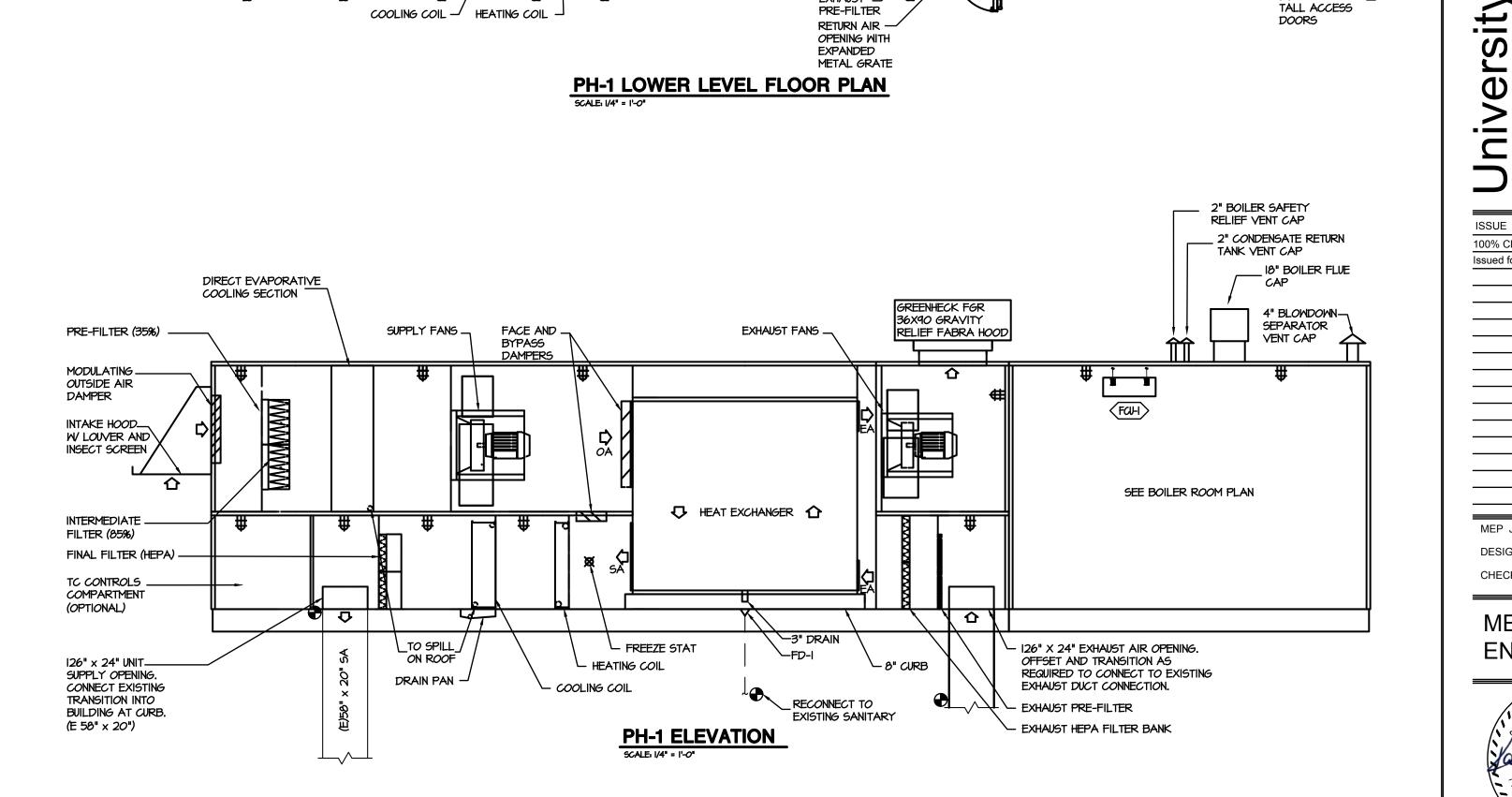
M-2.0

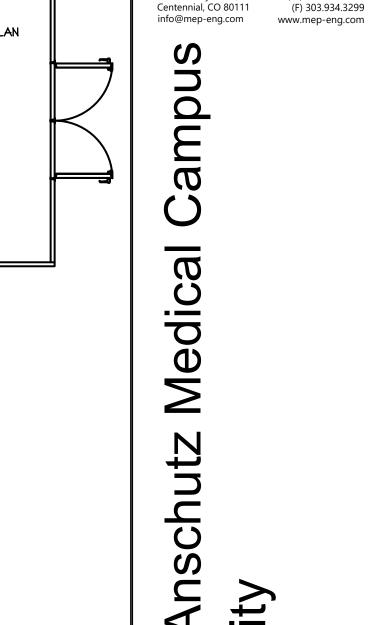
PENTHOUSE BOILER NEW PLAN


SCALE: 1/4" = 1'-0"


DRAWING NOTES (DEMO)

- REMOVE AND RETAIN EXISTING EQUIPMENT AND PREPARE FOR RELOCATION.
- 2. DISCONNECT AND REMOVE EXISTING BOILER.
- 3. CUT AND CAP PIPING BELOW ROOF AND PREPARE FOR NEW CONNECTION.
- 4. CUT AND CAP PIPING ON EXTERIOR WALL AND PREPARE FOR NEW CONNECTION.
- REMOVE AND RETAIN EXISTING EQUIPMENT WITH FLASH NEUTRALIZER KIT AND PREPARE FOR RELOCATION.
- 6. REMOVE EXISTING EQUIPMENT AND RETURN TO OWNER'S STOCK.


DRAWING NOTES


- MOUNT BOTTOM OF FAN COIL UNIT 4'-O" AFF. SUPPORT FROM STRUCTURE ABOVE. RE: INSTALLATION DIAGRAM ON M-0.3.
- 2. MOUNT EMERGENCY BOILER SHUT-OFF SWITCH 4'-O" AFF NEXT TO DOOR.
- COORDINATE WITH ELECTRICAL TO INTERLOCK WITH BOILER CONTROLS. 3. MOUNT THERMOSTAT 4'-O" AFF NEXT TO DOOR. INTERLOCK WITH FCU-I.
- 4. CHEMICAL POT FEEDER SHALL BE EQUAL TO 20L NU-CALGON MODEL 4628-0.
- INSTALL PER MANUFACTURER'S RECOMMENDED INSTALLATION. 5. 4" BLOWDOWN SEPARATOR VENT TO APPROVED VENT CAP ON ROOF.
- 6. 2" CONDENSATE RETURN TANK VENT TO APPROVED VENT CAP ON ROOF.
- 7. 2" BOILER SAFETY RELIEF VENT TO APPROVED VENT CAP ON ROOF.
- 8. IS" BOILER FLUE TO APPROVED VENT CAP ON ROOF.

PH-1 LOWER LEVEL FLOOR PLAN

4" VENT FROM_ BLOWDOWN

> C 13243 East 23rd Av Aurora, CO 80045 PRF - Power HVAC erinatal

0

D

Ø

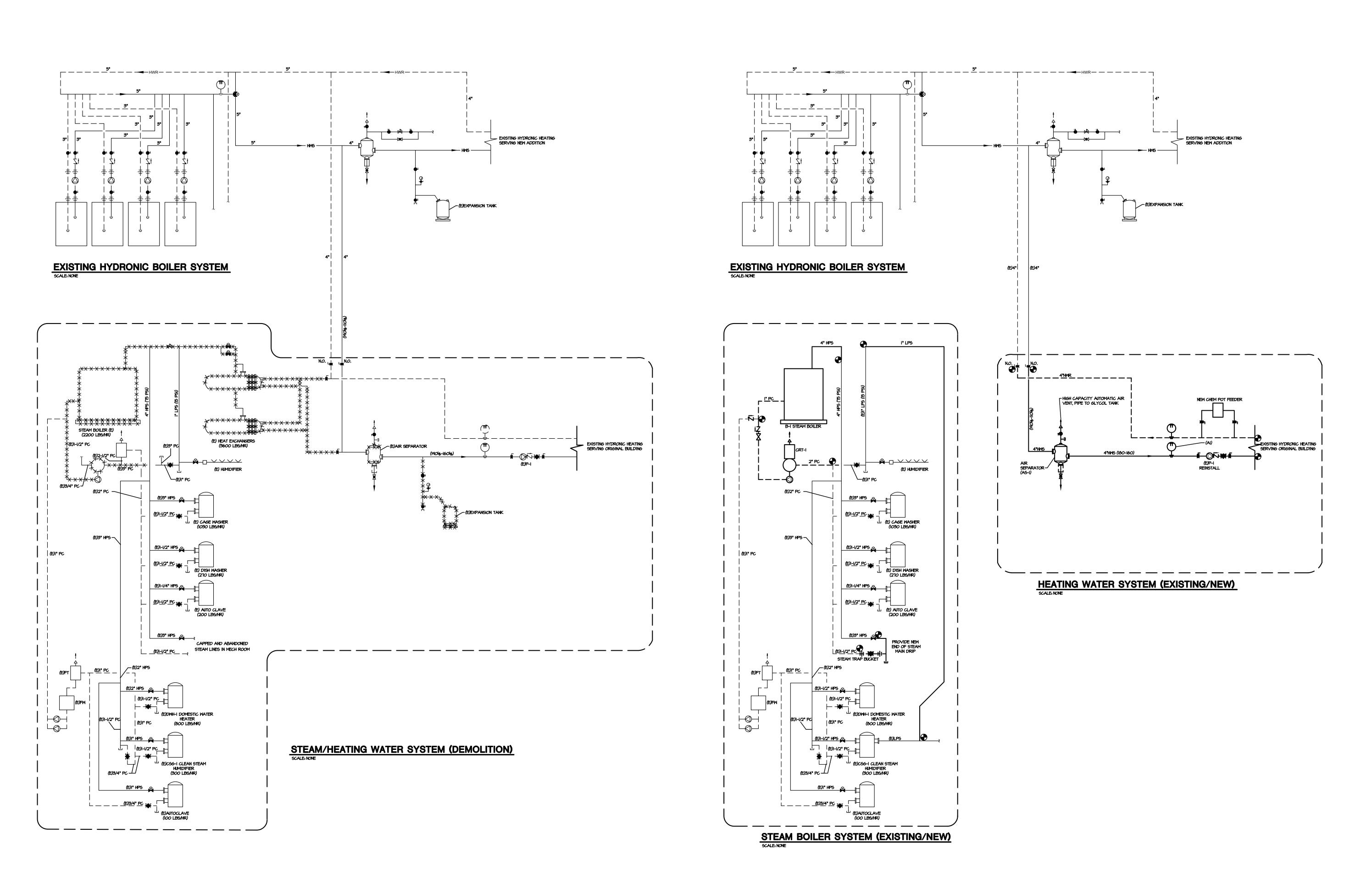
0

0

0

ENGINEERING INC.

CLIENT CENTRIC CONSULTING


6402 S. Troy Circle, Suite 100 (W) 303.936.1633

www.mep-eng.com

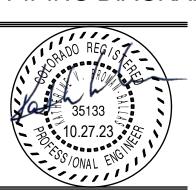
ISSUE		DATE
100% CD		10/06/2023
ssued for Cons	truction	10/27/2023
MEP JOB:	22318	
DESIGNED:	ADS	
CHECKED:	KVB	

MECHANICAL ENLARGED PLAN

M-3.0

Campu Anschutz Medical 9 olora Irch o University Perinatal

University of


Perinatal Reservable 13243 East 23rd Avenue Aurora, CO 80045

PRF - Power HVAC Boiler

JOB: 22318

MEP JOB: 22318
DESIGNED: ADS
CHECKED: KVB

MECHANICAL PIPING DIAGRAM

041 01	U ATIO						
sc CALC			YH4	19F			
Point #1 - At The Ut	ility Transformer						
Point #2 - At the Ma		/stem "I	MDS"				
f=	[1.732		length	X	sc(prev)] / [# runs	X wire factor	X voltage]
f = f =	1.732 0.030	Х	60	Х	16,900 / 6	X 20,565	X 48
M = M =	1/(1+f) 0.971						
Isc =	Isc(prev) x M	_					
Isc =	16,413						
Point #3 - At the Ma	in Distribution C		IDC"	X	sc(prev)] / [# runs	X wire factor	X voltage]
f = f =	1.732	X	60	Х	16,413 / 2	X 22,185	X 48
M =	1/(1+f)						
M =	0.926 Isc(prev) x M						
Isc =	15,196						
oint #4 - At Panel	"EMCC"						
f= f= f=	[1.732 1.732 0.256	X	length 60	X	sc(prev)] / [# runs 15,196 / 1	X wire factor X 12,843	X voltage]
т = М =	0.256 1/(1+f)						
M =	0.796						
Isc =	Isc(prev) x M 12,097						
Point #5 - At the 15	kVA Transforme	•					
f = f =	[1.732 1.732	X X	length	X X	sc(prev)] / [# runs 12,097 / 1	X wire factor X 981	X voltage]
f=	0.445						
M = M =	1/(1+f) 0.692						
Isc =	Isc(prev) x M 8,372						
Point #6 - Through		3-phas	e				
f =	Isc(pri)	X	V(pri)	X	1.73 X (%Z)		X kVA tran
f = f =	8,372 16.222	Х	480	Х	1.73 X 3.5	/ 100,000	X 15
M = M =	1/(1+f) 0.058						
Isc =	V(pri) / V(sec)	X M X I	sc(pri)				
Isc =	1,122 "ELP1"						
f=	[1.732	Х	length	Х	sc(prev)] / [# runs	X wire factor	X voltage]
f = f =	1.732 0.058	Х	15	Х	1,122 / 1	X 2,425	X 20
M = M =	1/(1+f) 0.945						
Isc =	lsc(prev) x M						
Isc =	1,061						
Point #8 - At Panel		v	leneti-	٧	scinroull / III	Y wire factor	Y voltac-1
f = f = f =	[1.732 1.732 0.307	X	length 50	X	lsc(prev)] / [# runs 15,196 / 1	X wire factor X 8,924	X voltage] X 48
M =	1/(1+f)						
M =	0.765						
Isc =	11,625						
Point #9 - At 100A A	ATS						
f = f =	[1.732 1.732	X X	length 15	X X	sc(prev)] / [# runs 11,625 / 1	X wire factor X 7,292	X voltage]
f =	0.086						
M = M =	1/(1+f) 0.921						
Isc =	Isc(prev) x M 10,701						
Point #10 - At Pane	l "GEN1"						
f= f=	[1.732	X X	length	X X	sc(prev)] / [# runs 10,701 / 1		X voltage]
f = f =	1.732 0.026	Х	5	۸	10,701 / 1	X 7,292	X 48
M = M =	1/(1+f) 0.974						
Isc =	Isc(prev) x M	\neg					
Isc = Point #11 - At 45kV	10,425 A Transformer						
70INT#11 - AT 45KV. f =	[1.732	Х	length	Х	sc(prev)] / [# runs	X wire factor	X voltage]
f = f =	1.732	X	5	X	10,425 / 1	X 3,806	X 48
M =	1/(1+f)						
M =	0.953						
Isc =	9,934						

Point #12 - Throug	h the Transformer	, 3-pha	se							
f =	lsc(pri)	Х	V(pri)	Χ	1.73	Х	(%Z)	1	100,000	X kVA tra
f =	9,934	Χ	480	Χ	1.73	Χ	3.5	1	100,000	Х
f =	6.416									
M =	1/(1+f)									
M =	0.135									
lsc =	V(pri) / V(sec)	X M X	lsc(pri)							
Isc =	3,091									
	2,000									
Point #13 - AtPane	I "GEN1A"									
f =	[1.732	х	length	Х	lsc(prev)	1 / 1	[# runs	Χv	vire factor	X voltage
f =	1.732	Х	5	Х			1	χ.		X Vollage
f =	0.014	^	Ü	^	0,001	,		^	0,024	^ .
'-	0.014									
M =	1/(1+f)									
M =	0.986									
Isc =	Isc(prev) x M	_								
Isc =	3,047									
	3,047	X	length	X	lsc(prev)] /	[# runs	Χv	vire factor	X voltage
Isc = Point #14 - At PH-1	3,047 Supply Fans	X X	length 50	X X			[# runs 1		vire factor 7,292	-
Isc = Point #14 - At PH-1	3,047 Supply Fans [1.732									-
Isc = Point #14 - At PH-1 f = f = f =	3,047 Supply Fans [1.732 1.732 0.299									-
Isc = Point #14 - At PH-1 f = f = f = M =	3,047 Supply Fans [1.732 1.732 0.299									-
Isc = Point #14 - At PH-1 f = f = f =	3,047 Supply Fans [1.732 1.732 0.299									-
Isc = Point #14 - At PH-1 f = f = f = M = M = Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M									-
Isc = Point #14 - At PH-1 f = f = f = M = M =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770									-
Isc = Point #14 - At PH-1 f = f = f = M = M = Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311									-
Isc = Point #14 - At PH-1 f = f = f = M = M = Isc = Point #15 - At PH-1	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans		50	X	12,097	1	1	X	7,292	x
Isc = Point #14 - At PH-1 f = f = f = M = M = Isc = Point #15 - At PH-1	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage
Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732 1.732	x	50	X	12,097	1	1 # runs	X	7,292	x
Isc = Point #14 - At PH-1 f = f = f = M = M = Isc = Point #15 - At PH-1	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage
Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732 1.732	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage
Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732 1.732 0.900	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage
Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732 1.732 0.900 1/(1+f) 0.526	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage
Isc =	3,047 Supply Fans [1.732 1.732 0.299 1/(1+f) 0.770 Isc(prev) x M 9,311 Exhaust Fans [1.732 1.732 0.900 1/(1+f)	×	50	x	12,097	1	1 # runs	X v	7,292	X voltage

APPLICABLE CODE STANDARDS
2021 INTERNATIONAL BUILDING CODE
2021 INTERNATIONAL FIRE CODE

	ELEC	CTRICAL SYMBOLS LEGE	END	
	ALL SYMBOLS	S INDICATED IN THE LEGEND MAY NOT NECESSARILY BE USED	ON PLANS.	
CIRCUITING	POWER SYMBOLS	FIRE ALARM SYMBOLS	ONE LINE DIA	AGRAM SYMBOLS
SYMBOL DESCRIPTION	SYMBOL DESCRIPTION	SYMBOL DESCRIPTION	SYMBOL DESCRIPTION	SYMBOL DESCRIPTION
		SYMBOL CEILING MOUNTED FIRE HORNSTROBE CEILING MOUNTED FIRE SPEAKER REMOTE INDICATOR LAMP MANUAL PULL STATION FS FILOW SWITCH TS TAMPER SWITCH PS PRESSURE SWITCH WALL MOUNTED FIRE HORNSTROBE WALL MOUNTED FIRE HORN FACE FIRE ALARM CONTROL PANEL ANN FIRE ALARM ANNUNCIATOR PANEL FIRE ALARM ANNUNCIATOR PANEL ANN FIRE ALARM ANNUNCIATOR PANEL FIRE SMOKE DAMPER HEAT DETECTOR FIRE SMOKE DAMPER HEAT DETECTOR SMOKE DETECTOR FIRE SMOKE DAMPER HEAT DETECTOR INTERCOM PUSH BUTTON, DOUBLE GANG BOX 34" CONDUIT STUB TO ACCESSIBLE CEILING BELL 1/2" CONDUIT STUB TO ACCESSIBLE CEILING BELL 1/2" CONDUIT STUB TO ACCESSIBLE CEILING SECURITY CAMERA, DOUBLE GANG BOX, 34" CONDUIT STUB TO ACCESSIBLE CEILING WALL SECURITY MOTION SENSOR, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING WALL SECURITY MOTION SENSOR, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING MISCIA SECURITY MOTION SENSOR, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING WALL SECURITY MOTION SENSOR, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING MISCIA SECURITY MOTION SENSOR, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING MUSIC OR PAGING SPEAKER, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING DOOR CONTACT, - SEE DRAWINING NOTES 1/2" CONDUIT STUB TO ACCESSIBLE CEILING MUSIC OR PAGING SPEAKER, DOUBLE GANG, 1/2" CONDUIT STUB TO ACCESSIBLE CEILING PHOTOCELL THERMOSTAT, LINE VOLTAGE MICCOMPONE JACK RTS REMOTE TEST SWITCH CLOCK		
DRAWING NOTES		COMBINATION CLOCK/SPEAKER BOX		
	LIGHTING CONTROL SENSORS		-	
WALL VACANCY SENSOR, DUAL TECH, SINGLE ZONE, INTEGRAL OVERRIDE SWITCH WALL VACANCY SENSOR, DUAL TECH, SINGLE ZONE, INTEGRAL OVER SWITCH, DIMMING a,b WALL VACANCY SENSOR, DUAL TECH, DUAL ZONE, INTEGRAL OVERRIDE SWITCH,	CEILING VACANCY SENSOR, DUAL TECH, SINGLE ZONE, POWER PACK; LV OVERRIDE SWITCHES CEILING VACANCY SENSOR, DUAL TECH, DUAL ZONE, 2P POWER PACK; LV OVERRIDE SWITCHES	CEILING VACANCY SENSOR, SINGLE ZONE, EXTERIOR RATED, EXTENDED RANGE, PIR INTERIOR DAYLIGHT SENSOR		
		ABBREV	ATIONS	
A,AMP AMPERE AC ABOVE COUNTER AFCI ARC FAULT CIRCUIT INTERRUPTER AFF ABOVE FINISHED FLOOR AFG ABOVE FINISHED GRADE AL ALUMINUM BLDG BUILDING C CONDUIT CB CIRCUIT BREAKER CCTV CLOSED CIRCUIT TELEVISION CT CURRENT TRANSFORMER CU COPPER	CLG CEILING (CEILING MOUNTED) CWP COLD WATER PIPE (D) EXISTING TO BE DEMOLISHED Db DECIBEL (E) EXISTING TO REMAIN EC ELECTRICAL CONTRACTOR EPO EMERGENCY POWER OFF EM EMERGENCY POWER CIRCUIT FA FIRE ALARM FC FOOTCANDLES GC GENERAL CONTRACTOR	GD GARBAGE DISPOSAL GFCI GROUND FAULT CIRCUIT INTERRUPTER G,GND GROUND HP HORSEPOWER IG ISOLATED GROUND DEVICE LV LOW VOLTAGE MC MECHANICAL CONTRACTOR MCB MAIN CIRCUIT BREAKER MFR MANUFACTURER MLO MAIN LUGS ONLY MV MEDIUM VOLTAGE	MW MICROWAVE (N) NEW N NEUTRAL N.C. NORMALLY CLOSED N.O. NORMALLY OPEN NEC NATIONAL ELECTRIC CODE NF NON FUSED NIC NOT IN CONTRACT NL NIGHT LIGHT NTS NOT TO SCALE (PART) PARTIAL CIRCUIT	REF REFRIGERATOR (RL) EXISTING TO BE RELOCATED RTS REMOTE TEST SWITCH TBB TELEPHONE PLYWOOD BACKBOARD UC UNDER COUNTER UG UNDER GROUND WP WEATHERPROOF - NEMA 3R XP EXPLOSION PROOF

2021 INTERNATIONAL MECHANICAL CODE 2021 INTERNATIONAL ENERGY CONSERVATION CODE 2023 NATIONAL ELECTRIC CODE 2021 INTERNATIONAL PLUMBING CODE 2021 INTERNATIONAL FUEL GAS CODE

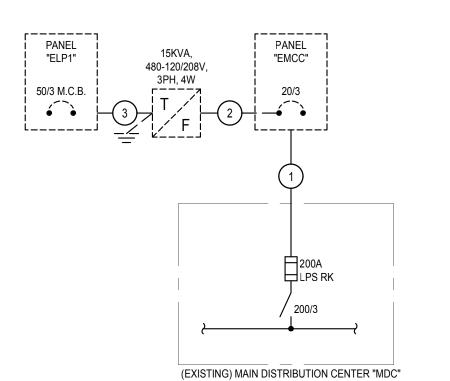
DESIGNATION	DESCRIPTION	VOLTAGE	PH	HP	kVA	FLA (MCA)	AIC (A)	Isc (A)	DATE	CONDUCTORS	CONDUIT	SWITCH	СВ	FUSE SIZE/TYPE	REMARKS
3-1	BOILER	480	3	1.0	-	2.1	10,000	7,085	10.17.23	(3-#12 CU, 1-#12 GND)	3/4"	30/3	20/3	20A FRS-R	-
EVAP-1	EVAPORATIVE COOLER	120	1	1/3	-	-	-	-	-	(2#12 CU;1#12 GND)	3/4"	SPST	20/1	-	2,3
CU-1	FAN COIL UNIT	120	1	.22	-	-	-	-	-	(2#12 CU;1#12 GND)	3/4"	STO	20/1	-	-
P-4	PUMP	480	3	2	÷	-	-	-	-	(3-#12 CU, 1-#12 GND)	3/4"	30/3	20/3	20A FRS-R	-
2-6	PUMP	480	3	2	-	-	-	-	-	(3-#12 CU, 1-#12 GND)	3/4"	30/3	20/3	20A FRS-R	-
PH-1	PENTHOUSE AIR HANDLER (SUPPLY FAN)	480	3	(3) 25	-	(78.0)	10,000	9,311	10/27/23	(3-#1 CU, 1-#6 GND)	1-1/2"	200/3	125/3	125A FRS-R	1,2
	PENTHOUSE AIR HANDLER (EXHUAST FAN)	480	3	(3) 10	-	(39.0)	10,000	6,367	10/27/23	(3 #6 CU;1 #10 GND)	3/4"	60/3	50/3	50A FRS-R	1,2
.VR-1	MOTORIZED LOUVER	120	1	-	500 W	-	-	-	-	(2#12 CU;1#12 GND)	3/4"	HARD WIRE	20/1	-	-
VS-1	WATER SOFTENER	120	1	-	500 W	-	-	-	-	(2#12 CU;1#12 GND)	3/4"	HARD WIRE	20/1	-	-
REMARKS:															

Medical Anschutz cility 9 Colora search 13243 East 23rd Avenue Aurora, CO 80045 PRF - Power HVAC Boiler Q University Perinatal ISSUE Issued for Construction 10/27/2023

MEP JOB: 22318 DESIGNED: CMM

DATE 10/06/2023

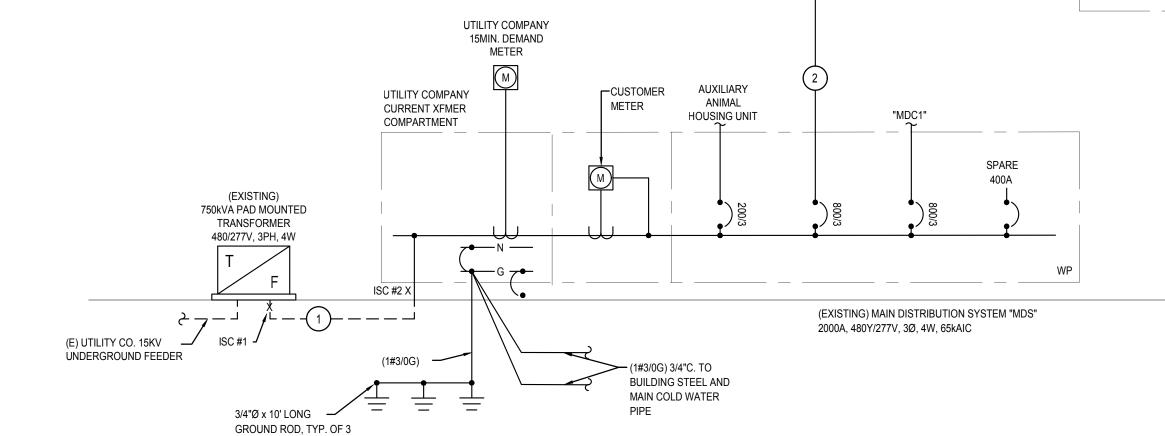
CHECKED: RCC ELECTRICAL LEGEND AND DETAILS

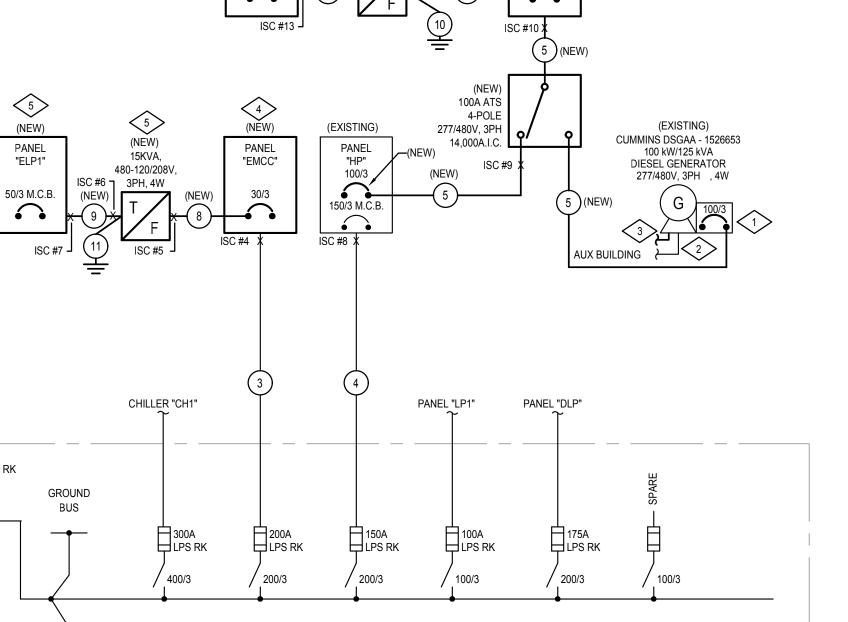

	PANEL	"EMCC" (DEMO)		_		VOLTAGE	277	/	480	V	3	PH	4	W	
	FLUSH	MAIN		_		MLO	Х	_							
	SURFACE X	BUS	200A	-	FE	ED THRU			-	A.I.C.	22,000A				
TYPE	DESCRIPTION	BKR	CIR	LO	AD (VA/PH	IASE)				CIR	BKR	DES	CRIPTION		TYPE
				A		В		С							
	P-1: HEAT PUMP	30	1	0	0					2	125	PH-1 FA	NS/LIGHT CN	TRL	
	-		3			0	0			4		-			_
	- D.C. EEEDWATER DU	3	- -	0	0			0	0	6	<u> </u>	-			_
	P-6: FEEDWATER PU	MP 30	9	0	0	0	0			10	30	B-1			+
	-	3	-					0	0	12	3	-			
	P-4: PH-1 CIRC PUMP	30 /	13	0	0					14	20 /	PANEL '	"ELP1"		
	-		15			0	0			16		-			
	-	3	/ 					0	0	18	/ 3	-			
	SPARE	30	19	0	0	0				20		SPACE			
	-	3	21			0	0	0	0	22		SPACE SPACE			
	IT COMPRESSOR	30	25	0	0			0	0	26		SPACE			+-
	-		27	_	_	0	0			28		SPACE			
	-	3	29					0	0	30		SPACE			
				0		0		0							
	LOAD TYPE		CONNE	ECTED KV	4	TOTAL		FACTOR		DEMA	ND KVA		TOTAL		_
			Α	В	С	ALL				Α	В	С	ALL		
	LIGHTING/CONTINUC	ous	0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.	0	
	RECEPTACLE (10KV/	A OR LESS)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.	0	
	RECEPTACLE (OVER	10KVA)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.	0	
	HVAC/MOTOR		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.	0	
	MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.	0	
	KITCHEN EQUIPMEN	T	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.	0	
	MISCELLANEOUS		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.	0	
		TOTAL KVA	0.0	0.0	0.0	0.0		то	OTAL KVA	0.0	0.0	0.0	0.	0	
				1					AMPERES		0.0	0.0	0.		
	LEGEND	L = LIGHTING	R =	RECEPTA	CLE	M = F	HVAC / M			= KITCHI			CELLANEOUS		

2 EXISTING LOAD TO BE REMOVED AND REPLACED. REFER TO SHEETS E-0.1 AND E-0.3 FOR ADDITIONAL INFORMATION.

NOT TO SCALE

	PANEL "ELP1"	(DEMO)		-		VOLTAGE _	120	_ /	208	V	3	PH	4	W	
	FLUSH	MAIN	50/3			MLO	Χ	_							
	SURFACE X	BUS	100A	-	FE	EED THRU _				A.I.C.	10,000A			_	
TYPE	DESCRIPTION	BKR	CIR	LO	AD (VA/PH	HASE)				CIR	BKR	DES	CRIPTION		_
				А	·	В		С							
	FIRE PANEL	20	1	0	0					2	20	SWAMF	PER TC		_
	BOILER T.C. CNTL PAN	20	3			0	0			4	20	P5 PUN	1P		
	RM 127	20	5					0	0	6	20	P7			
	RM 139	20	7	0	0					8	20	P8			
	SURG. LTG 127,132,136	20	9			0	0			10	20	T.C152	2		
	SURG. LGT. 139	20	11					0	0	12	20	REFRE	G. DRYER		
	SURG. LGT 139	20	13	0	0					14	20	FACP			
	RECEPT BY LGT SWITCH	20	15			0	0			16	20	SPARE			
	LTG. P. HOUSE 111,152	20	17					0	0	18	20	SPARE			
	BOILER ALARM CKT	20	19	0	0					20	20	SPARE			_
	SPARE	20	21			0	0			22	20	WALL F	IEATER		
	SPARE	20	23					0	0	24	/ 2	-			
				0		0		0							
	LOAD TYPE		CONNE	CTED KV	١	TOTAL		FACTOR		DEMA	ND KVA		TOTAL		
			Α	В	С	ALL				Α	В	С	ALL		
	LIGHTING/CONTINUOUS		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0	.0	
	RECEPTACLE (10KVA OR LES	SS)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0	.0	
	RECEPTACLE (OVER 10KVA)		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0	.0	
	HVAC/MOTOR		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0	.0	
	MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0			
	KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0	.0	
	MISCELLANEOUS		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0	.0	
		TOTAL KVA	0.0	0.0	0.0	0.0		тс	OTAL KVA	0.0	0.0	0.0	0	.0	
		·						_ TOTAL A	MPERES	0.0	0.0	0.0	0	.0	
	LEGEND L = LIGH	HTING	R =	RECEPTA	CLE	M = H	IVAC / M			= KITCHE			CELLANEOUS		


LOAD CALCUL	ATION
LOAD ON 125KVA GENERATOR	
PEAK DEMAND	26.7 KVA
PEAK DEMAND AT 125%	33.4 KVA
LOAD ADDED	19.4 KVA
TOTAL LOAD	52.8 KVA



2. (3-#12 CU, 1-#12 CU GND) 3/4"C 3. (4-#6 CU, 1-#10 CU GND) 1"C

1000A, 480Y/277V, 3Ø, 4W, 50kAIC PARTIAL ELECTRICAL ONE-LINE DIAGRAM (DEMO)

480-120/208V,

○ DRAWING NOTES

- DEMOLISH AND REPLACE EXISTING SPARE CIRCUIT BREAKER IN EXISTING GENERATOR. REPLACE 175A, 3-POLE BREAKER WITH 100A,
- EXISTING GENERATOR FED FROM SEPARATE AUX BUILDING SYSTEM. GENERATOR AND EXISTING FEEDS TO REMAIN AS IS, ONLY
- UTILIZE EXISTING SPARE CIRCUIT BREAKER FROM GENERATOR.
- 3. PROVIDE 1" CONDUIT FROM EXISTING GENERATOR TO NEW ATS FOR NEW
- 4. DEMOLISH AND REPLACE EXISTING PANELBOARD "EMCC" WITH NEW 200A, 3PH, 4W, 22,000AIC RATED PANELBOARD. SEE SHEET E0.3 FOR MORE
- DEMOLISH AND REPLACE EXISTING PANELBOARD "ELP1" AND EXISTING 15kVA TRANSFORMER. BOTH TO BE FED OUT OF NEW PANELBOARD "EMCC". SEE SHEET E.03 FOR MORE INFORMATION.

FEEDER SCHEDULE:

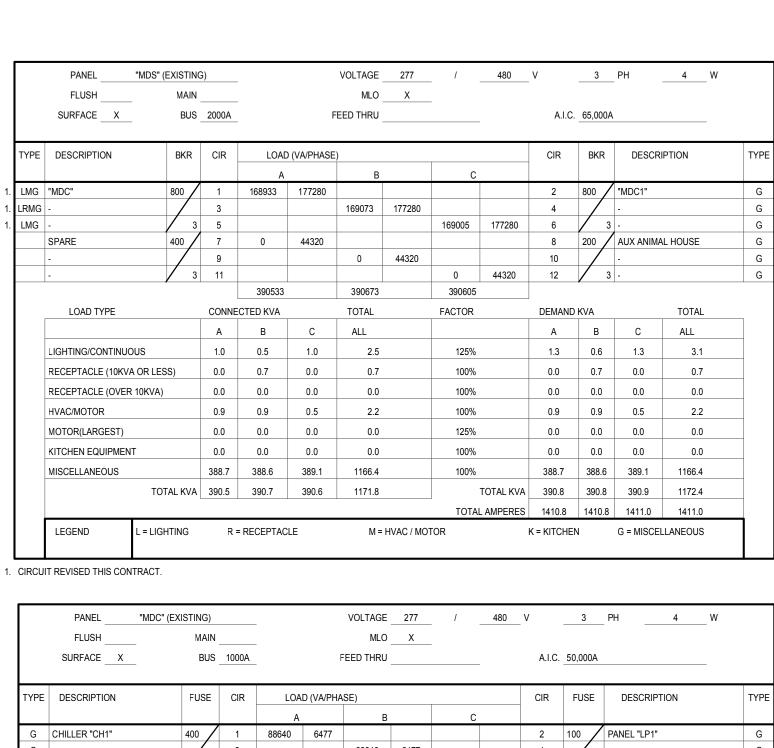
- 1. 6[(4-400 KCMIL CU) 3"C]
- 2. 2[(4-500 KCMIL CU, 1-#1 CU GND) 3-1/2"C]
- 3. (4-#3/0 CU, 1-#6 CU GND) 2-1/2"C
- 4. (4-#1/0 CU, 1-#6 CU GND) 2"C 5. (4-#1 CU, 1-#8 CU GND) 1-1/2"C
- 6. (4-#4 CU, 1-#8 CU GND) 1-1/2" C
- 7. (4-#1/0 CU, 1-#6 CU SSBJ GND) 2"C
- 8. (3-#10 CU, 1-#10 CU GND) 3/4"C 9. (4-#6 CU, 1-#8 CU SSBJ GND) 1"C
- 10. (1-#6 CU GND) 3/4"C 11. (1-#8 CU GND) 3/4"C

GROUND LEVEL

EXISTING ELECTRICAL ONE-LINE DIAGRAM NOT TO SCALE

(EXISTING) MAIN DISTRIBUTION CENTER "MDC"

1000A, 480Y/277V, 3Ø, 4W, 50kAIC


6402 S. Troy Circle, Suite 100 (W) 303.936.1633 Centennial, CO 80111 (F) 303.934.3299 info@mep-eng.com www.mep-eng.com

ampu 0 Medical Anschutz 9 olora o

MEP JOB:	22318	
DESIGNED:	CMM	
CHECKED:	RCC	
		f

Issued for Construction 10/27/2023

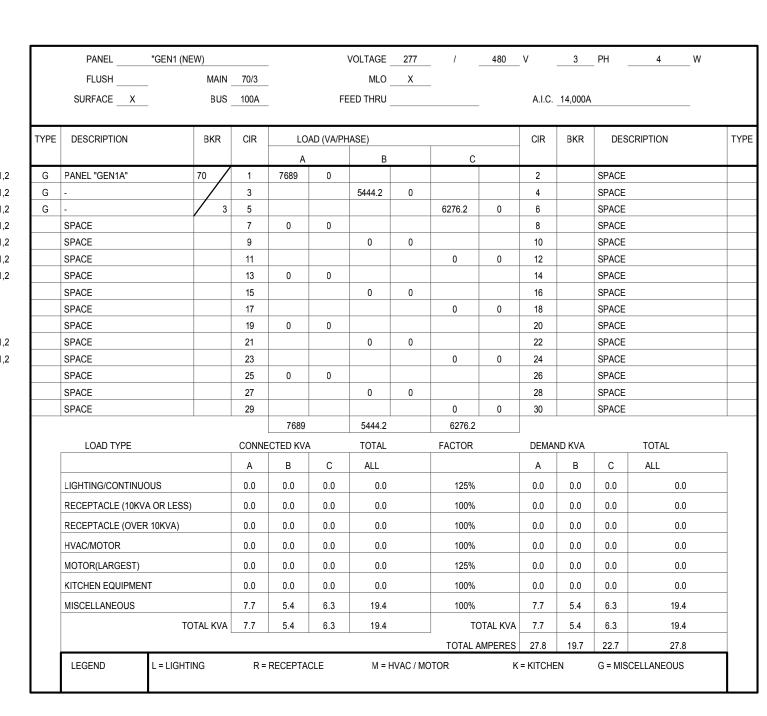
ELECTRICAL ONE-LINE DIAGRAM

		FLUSH	MDC" (EXISTING)				-	277 X	- / -	480	V	3	_ PH	4	_ W	
		SURFACE X				F					A.I.C.	50,000A			_	
۲	YPE	DESCRIPTION	FUSE	CIR	LOA	D (VA/PHA	SE)				CIR	FUSE	DESC	RIPTION		TYF
					А		В		С							
	G	CHILLER "CH1"	400	1	88640	6477					2	100	PANEL "L	P1"		G
	G	-		3			88640	6477			4		-			G
	G	-	3	5					88640	6477	6	3	-			G
-		PANEL "EMCC"	200	7	45129	4987					8	200	PANEL "D	LP"		G
_	RMG	-		9			45269	4987			10		-			G
	MG	- DANEL HID!	3	11	00700				45201	4987	12	_	-			G
-	G G	PANEL "HP"	200	13 15	23700	0	23700	0			14 16	100	SPARE			+
_	G	_	3	17			23700	0	23700	0	18	3	-			+
			/ -	.,	168933		169073		169005		10	/ -				
		LOAD TYPE		CONNE	CTED KVA		TOTAL		FACTOR		DEMAN	D KVA		TOTAL		
				Α	В	С	ALL				Α	В	С	ALL		7
		LIGHTING/CONTINUOUS	S	1.0	0.5	1.0	2.5		125%		1.3	0.6	1.3	3.1		
		RECEPTACLE (10KVA O	OR LESS)	0.0	0.7	0.0	0.7		100%		0.0	0.7	0.0	0.7		1
		RECEPTACLE (OVER 10	,	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0		1
		HVAC/MOTOR	,	0.9	0.9	0.5	2.2		100%		0.9	0.9	0.5	2.2		
		MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0		1
		KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0		1
		MISCELLANEOUS		167.1	167.0	167.5	501.6		100%		167.1	167.0	167.5	501.6		
			TOTAL KVA	168.9	169.1	169.0	507.0		TC	TAL KVA	169.2	169.2	169.3	507.6		
									J	MPERES	610.8	610.8	611.0	611.0		
		LEGEND L	- LICUTING		DECEDIAC	N.E.	M = 1	IV/A C / MC								1
		LEGEND	= LIGHTING	κ-	RECEPTAC	LE	IVI – F	HVAC / MC	TOR	r	(= KITCHE	:IN	G - MISC	ELLANEOUS		1

	PANEL "ELP1" (I	NEW)				VOLTAGE	120	1	208	V	3	PH	4	W	
	FLUSH		50/3	•		-	Х	-		-				_	
	SURFACE X		100A	-	FE	-		-		A.I.C.	10,000A			_	
	T									I					_
TYPE	DESCRIPTION	BKR	CIR	LO	AD (VA/PI	HASE)		T		CIR	BKR	DES	CRIPTION		
				Α		В		С							
G	FIRE PANEL	20	1	100	100					2	20	SWAMP	ER TC		
G	BOILER T.C. CNTL PAN	20	3			100	300			4	20	P5 PUM	Р		
G	RM 127	20	5					500	300	6	20	P7			
G	RM 139	20	7	500	300					8	20	P8			
L	SURG. LTG 127,132,136	20	9			500	100			10	20	T.C152			
L	SURG. LGT. 139	20	11					500	500	12	20		B. DRYER		
L	SURG. LGT 139	20	13	500	100					14	20	FACP			\dashv
R	RECEPT PH	20	15			360	864	500	500	16	20	EVAP-1			\dashv
L	LTG. P. HOUSE 111,152	20	17	100	F00			500	500	18	20	TC PANI			\dashv
G	BOILER ALARM CKT	20	19	100	500	260	1000			20	20		IDLER LIGHTS	>	\dashv
R	EXISTING EQUIP SPARE	20	21			360	1000	0	1000	22	20	WALL H	EATER		\dashv
G	WS-1	20	25	864	864			U	1000	26	20	EVAP-1			\dashv
G	LVR-1	20	27	004	004	100	864			28	20	EVAP-1			\dashv
G	EPO	20	29			100	004	200	480	30	20	FCU-1			\dashv
	SPACE	20	31	0	480			200	700	32	20	CTP-1			\dashv
	SPACE		33		100	0	0			34		SPACE			\exists
	SPACE		35					0	0	36		SPACE			
	SPACE		37	0	0					38		SPACE			
	SPACE		39			0	0			40		SPACE			
	SPACE		41					0	0	42		SPACE			
			4408		4548		4480								
	LOAD TYPE		CONNE	CTED KVA	\	TOTAL		FACTOR		DEMA	ND KVA	1 1	TOTAL		_
			Α	В	С	ALL				Α	В	С	ALL		
	LIGHTING/CONTINUOUS		1.0	0.5	1.0	2.5		125%		1.3	0.6	1.3	3.	1	
	RECEPTACLE (10KVA OR LES	S)	0.0	0.7	0.0	0.7		100%		0.0	0.7	0.0	0.	7	
	RECEPTACLE (OVER 10KVA)		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	0	
	HVAC/MOTOR		0.9	0.9	0.5	2.2		100%		0.9	0.9	0.5	2.:	2	
	MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0	0	
	KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	0	
	MISCELLANEOUS		2.5	2.5	3.0	8.0		100%		2.5	2.5	3.0	8.0	0	
	-	TOTAL KVA	4.4	4.5	4.5	13.4		то	TAL KVA	4.7	4.7	4.7	14.	1	
								TOTAL A	MPERES	38.8	38.9	39.4	39.4	4	

1. RECONNECT EXISTING CIRCUITRY TO NEW REPLACEMENT PANELBOARD. EXTEND WIRING AND CONDUIT AS NECESSARY.

2. CONTRACTOR TO VERIFY CIRCUIT REUSE UPON INSTALLATION. TURN OFF ANY UNUSED CIRCUITS AND RELABEL AS SPARE.


	PANEL "HI				,	-			480	V	3	_ PH	4 W	
	FLUSH	MAIN	150/3			MLO	Х	-						
	SURFACE X	BUS	225A		FE	ED THRU				A.I.C.	22,000A			
PE	DESCRIPTION	BKR	CIR	LO	AD (VA/PH	IASE)				CIR	BKR	DES	SCRIPTION	TYPI
				А		В		С						
	1ST FLR LIGHTING	20	1	0	0					2	20	DLC-1		
	1ST FLR LIGHTING	20	3			0	0			4	20	SPARE		
	1ST FLR LIGHTING	20	5					0	0	6	20	SPARE		
	1ST FLR LIGHTING	20	7	0	0					8	20	SPARE		
	RM 118,119 LTGS	20	9			0	0			10	15	SPARE		
	SPARE	20	11					0	0	12		-		
	PH-2	30	13	0	0					14	/ 3	-		
	-		15			0	0			16	20 /	SPARE		
	-	3	17					0	0	18		-		
	SPACE		19	0	0					20	/ 3	-		
	EXISTING LOAD	20	21			0	0			22	30	WASHE	R	
_	OUTSIDE LIGHTS	20	23					0	0	24		-		
	SPACE		25	0	0					26	/ 3	-		
	SPACE		27			0	0			28	30	HUMIDI	FIER	
_	SPACE		29					0	0	30		-		
-	SPACE		31	0	0					32	3	-		
	SPACE		33			0	0			34		SPACE		
_	SPACE		35					0	0	36		SPACE		
-	SPACE		37	0	7689					38	100	ATS FO	R GEN1	G
	SPACE		39			0	5444.2			40		-		G
	SPACE		41					0	6276.2	42	/ 3	-		G
				7689		5444.2		6276.2						
Г	LOAD TYPE		CONNE	CTED KVA	<u> </u>	TOTAL		FACTOR		DEMA	ND KVA		TOTAL	
			Α	В	С	ALL				Α	В	С	ALL	
	LIGHTING/CONTINUOUS		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0	
	RECEPTACLE (10KVA OF	R LESS)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	RECEPTACLE (OVER 10)	· · · · · · · · · · · · · · · · · · ·	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	HVAC/MOTOR	,	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0	
	KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	MISCELLANEOUS		7.7	5.4	6.3	19.4		100%		7.7	5.4	6.3	19.4	2.
		TOTAL KVA	7.7	5.4	6.3	19.4		TC	TAL KVA	7.7	5.4	6.3	19.4	2.
								TOTAL A	MPERES	27.8	19.7	22.7	27.8	
ſ	LEGEND L=	LIGHTING	R=	RECEPTA	CLE	M = H	HVAC / MC	TOR	K	= KITCHI	EN	G = MIS	CELLANEOUS	

PROVIDE NEW CIRCUIT BREAKER ON EXISTING PANELBOARD. MATCH EXISTING TYPE AND AIC RATING.
 LOAD ADDED TO PANEL THIS CONTRACT. SEE LOAD CALCULATION THIS SHEET FOR TOTAL LOAD ON PANEL.

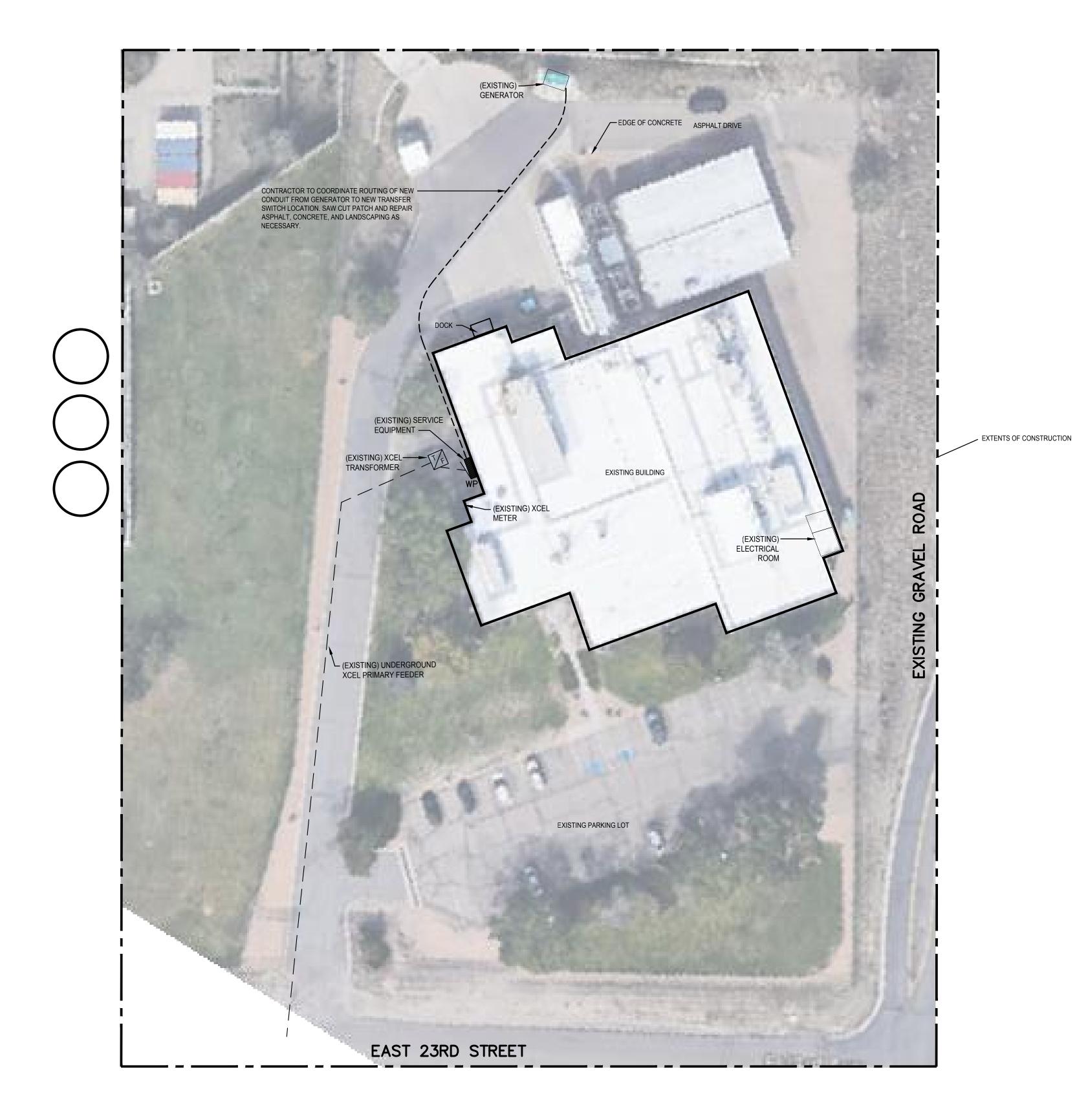
LOAD CALCUI	LATION
LOAD ON PANEL "HP"	
EXISTING LOAD	36.8 KVA
EXISTING LOAD AT 125%	46.1 KVA
LOAD ADDED	19.4 KVA
TOTAL LOAD	65.5 KVA

		PANEL "EMCC	" (NEW)			\	VOLTAGE	277	. /	480	V	3	PH	4	W	
		FLUSH	MAIN				MLO	Χ								
		SURFACE X	BUS	200A		FE	ED THRU			-	A.I.C.	22,000A			_	
	TYPE	DESCRIPTION	BKR	CIR	LO	AD (VA/PH	ASE)				CIR	BKR	DESC	CRIPTION		TYPE
					А		В		С							
1.	G	P-1: HEAT PUMP	30	1	3048	21606					2	125	PH-1 (SU	JPPLY FANS)		G
1.	G	-		3			3048	21606			4		-			G
1.	G	-	3	5					3048	21606	6	3	-			G
	G	P-6 FEED WATER PUMP	20	7	942	10803					8	50	PH-1 (E)	(HUAST FANS))	G
	G	-		9			942	10803			10		-			G
	G	-	3	11					942	10803	12	3	-			G
2.	G	P-4: CIRC PUMP	20	13	831	4408					14	30	PANEL "	ELP1"		LMG
2.	G	-		15			831	4548			16		-			LRMG
2.	G	-	3	17					831	4480	18	/	-			LMG
1.	G	IT COMPRESSOR	30	19	2660	831	0000	004			20	20	B-1			G
1.	G	-		21			2660	831	2000	004	22		_			G
1.	G	SPARE	30	23 25	0	0			2660	831	24 26	3	SPACE			G
		SPARE	30	27	U	U	0	0			28		SPACE			
			3	29			0	U	0	0	30		SPACE			
		SPACE		31	0	0				0	32		SPACE			
		SPACE		33			0	0			34		SPACE			
		SPACE		35					0	0	36		SPACE			
		SPACE		37	0	0					38		SPACE			
		SPACE		39			0	0			40		SPACE			
		SPACE		41					0	0	42		SPACE			
					45129		45269		45201							
		LOAD TYPE		CONNE	CTED KV	4	TOTAL		FACTOR		DEMA	ND KVA		TOTAL		
				Α	В	С	ALL				Α	В	С	ALL		
		LIGHTING/CONTINUOUS		1.0	0.5	1.0	2.5		125%		1.3	0.6	1.3	3.1		
		RECEPTACLE (10KVA OR LE	SS)	0.0	0.7	0.0	0.7		100%		0.0	0.7	0.0	0.7		
		RECEPTACLE (OVER 10KVA)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0		
		HVAC/MOTOR	,	0.9	0.9	0.5	2.2		100%		0.9	0.9	0.5	2.2		
		MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0		
		KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0		
		MISCELLANEOUS		43.3	43.2	43.7	130.2		100%		43.3	43.2	43.7	130.2		
		MIOGELETATEOGO	TOTAL KVA	45.1	45.3	45.2	135.6			OTAL KVA		45.4	45.5	136.2		
			TOTALITYA	70.1	40.0	70.2	100.0		,	AMPERES		163.9	164.1	164.1		
		LEGEND L = LIG	SHTING	R =	RECEPTA	CLF	M = 1	HVAC / MO			= KITCHI			CELLANEOUS		7
		L - LIG	71111 1 0	ΙΧ =	NEOLF IA	OLL	IVI — I	IN AO / IVIO		K	- китопі	L.1 V	O - IVIIO	JELENIE OUS		
		NNECT EXISTING CIRCUITRY														

RECONNECT EXISTING CIRCUITRY TO NEW REPLACEMENT PANELBOARD. EXTEND WIRING AND CONDUIT AS NECESSARY.
 CONNECT EXISTING CIRCUITING TO NEW REPLACEMENT PUMP P-4. EXTEND WIRING AND CONDUIT AS NECESSARY FOR NEW CONNECTION.

	PANEL "GE	EN1A (NEW)				VOLTAGE	120	/	208	V	3	PH	4 W	
	FLUSH	MAIN	150/3			MLO	Χ							
	SURFACE X		200A	-	F	-		_		A.I.C.	10,000A			
TYPE	DESCRIPTION	BKR	CIR	LO	AD (VA/PI	HASE)				CIR	BKR	DESC	CRIPTION	Т
				А		В		С						
G	(E)FREEZER	20	1	1860	833					2	20	FUTURE	FREEZER	
G	(E) FREEZER	20	3			416	833			4		-		
G	-		5					416	833	6	3	-		
G	(E) FREEZER	20	7	416	833					8	20 /	FUTURE	FREEZER	
G	-	2	9			416	833			10		-		
G	(E) FREEZER	20	11					1248	833	12	3	-		
G	-	2	13	1248	833					14	20	FUTURE	FREEZER	
G	(E) FREEZER	20	15			447.2	833			16		-		
G	-	2	17					447.2	833	18	3	-		
	SPACE		19	0	833					20	20	FUTURE	FREEZER	
	SPACE		21			0	833			22	$-\!\!\!/-$	-		
	SPACE		23					0	833	24	3			
	SPACE		25	0	833					26	20	FUTURE	FREEZER	
	SPACE		27			0	833			28		-		
	SPACE		29					0	833	30	3	-		
	SPACE		31	0	0					32	20	SPARE		
	SPACE		33			0	0			34	20	SPARE		
	SPACE		35					0	0	36		SPACE		
	SPACE		37	0	0					38		SPACE		
	SPACE		39			0	0	_	_	40		SPACE		
	SPACE		41					0	0	42		SPACE		
				7689		5444.2	5444.2 6276							
	LOAD TYPE		CONNE	CTED KVA	1	TOTAL		FACTOR		DEMA	ND KVA		TOTAL	
			Α	В	С	ALL				Α	В	С	ALL	
	LIGHTING/CONTINUOUS		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0	
	RECEPTACLE (10KVA OR	(LESS)	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	RECEPTACLE (OVER 10K	· · ·	0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	HVAC/MOTOR		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	\dashv
	MOTOR(LARGEST)		0.0	0.0	0.0	0.0		125%		0.0	0.0	0.0	0.0	
	KITCHEN EQUIPMENT		0.0	0.0	0.0	0.0		100%		0.0	0.0	0.0	0.0	
	MISCELLANEOUS		7.7	5.4	6.3	19.4		100%		7.7	5.4	6.3	19.4	
		TOTAL KVA	7.7	5.4	6.3	19.4		TC	TAL KVA	7.7	5.4	6.3	19.4	
		'							MPERES	64.1	45.4	52.3	64.1	

ENGINEERING INC.


CLIENT CENTRIC CONSULTING6402 S. Troy Circle, Suite 100 (W) 303.936.1633
Centennial, CO 80111 (F) 303.934.3299

info@mep-eng.com www.mep-eng.com

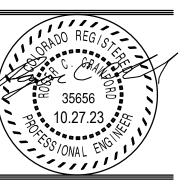
ampu

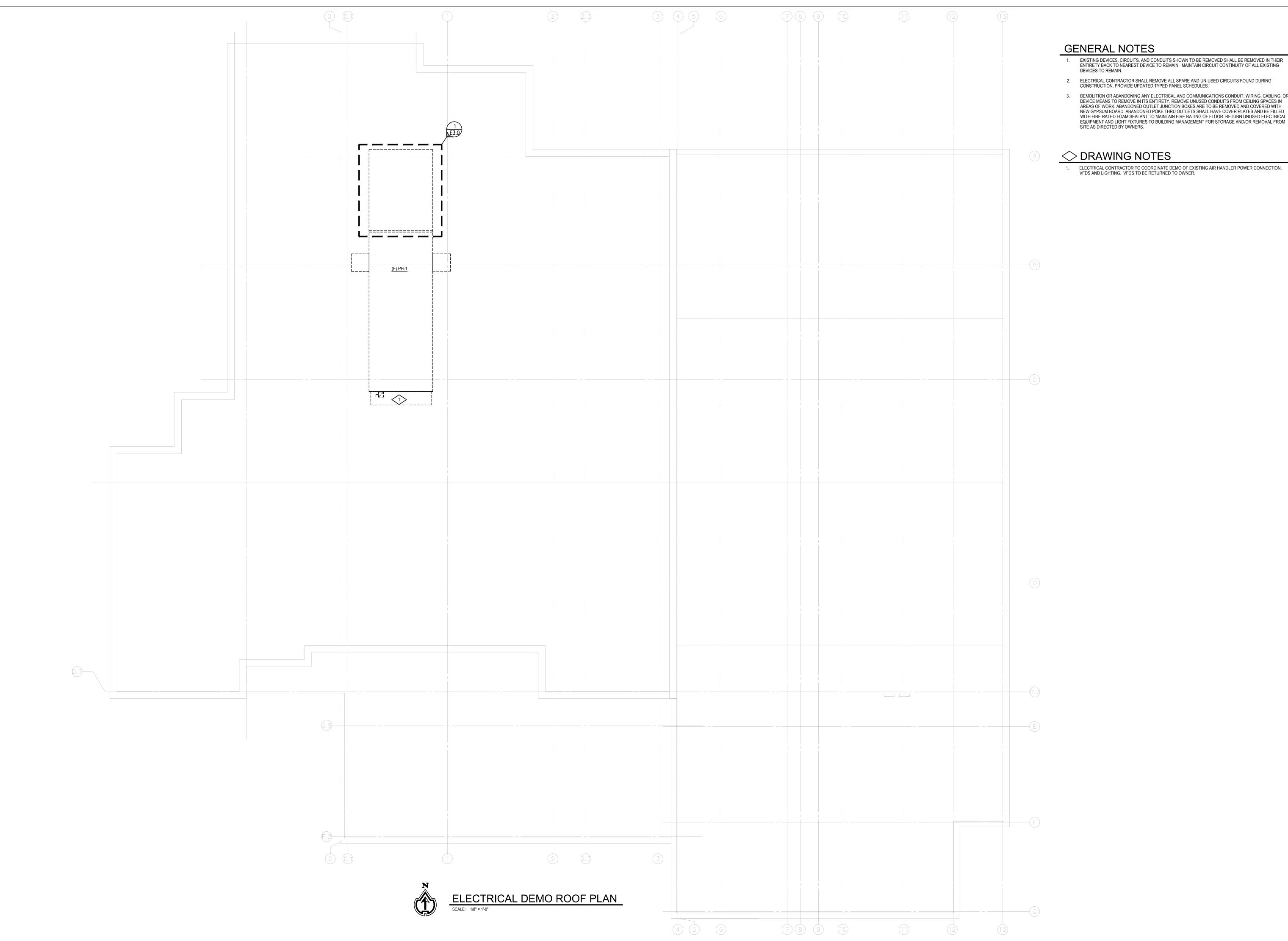
0

E-0.3

GENERAL NOTES

1. SITE PLAN SHOWN FOR INFORMATION ONLY.


Campu Anschutz Medical 9 Colora arch


 100% CD
 10/06/2023

 Issued for Construction
 10/27/2023

CHECKED: RCC

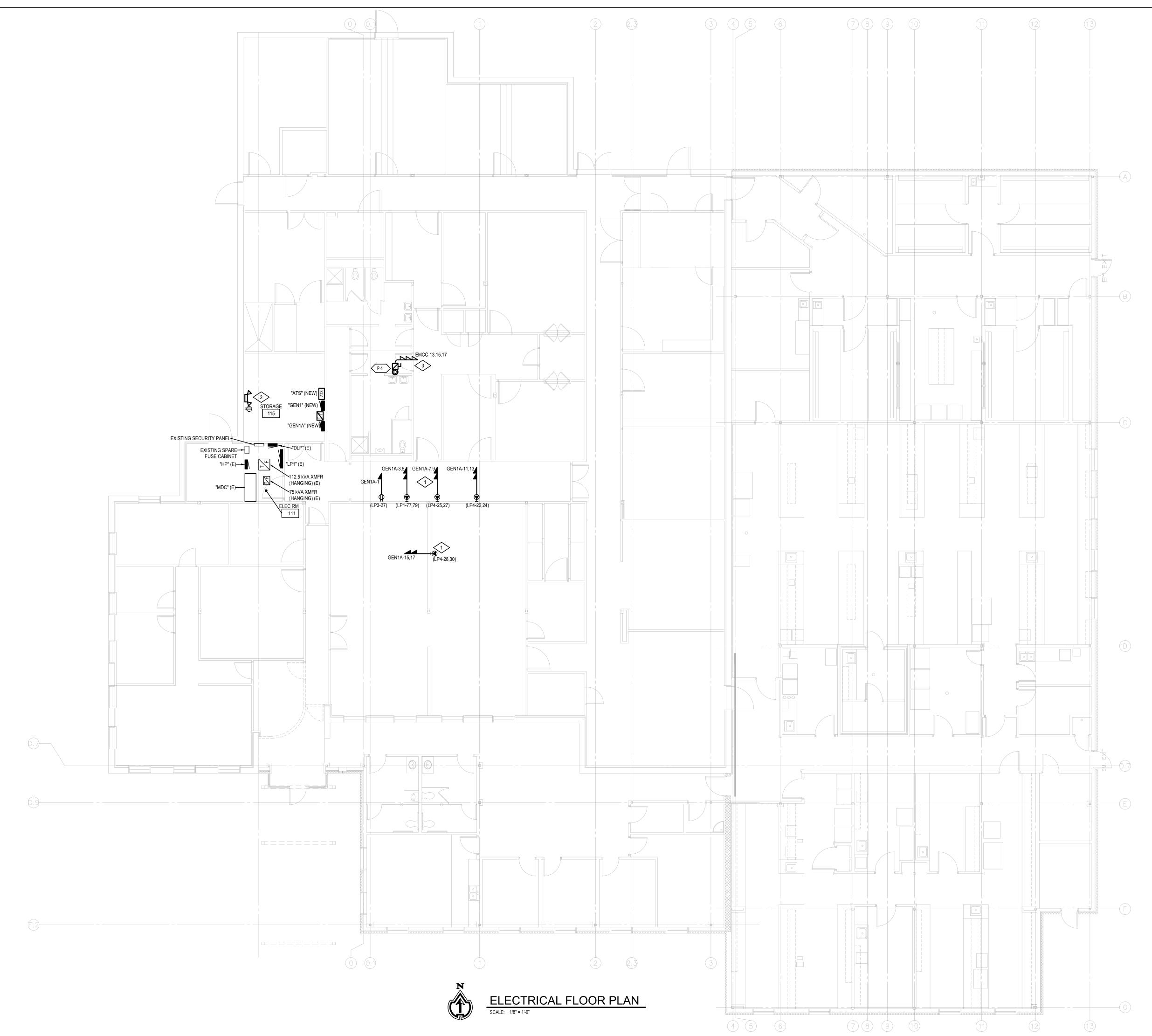
ELECTRICAL SITE PLAN

- EXISTING DEVICES, CIRCUITS, AND CONDUITS SHOWN TO BE REMOVED SHALL BE REMOVED IN THEIR ENTIRETY BACK TO NEAREST DEVICE TO REMAIN. MAINTAIN CIRCUIT CONTINUITY OF ALL EXISTING
- 3. DEMOLITION OR ABANDONING ANY ELECTRICAL AND COMMUNICATIONS CONDUIT, WIRING, CABLING, OR DEVICE MEANS TO REMOVE IN ITS ENTIRETY. REMOVE UNUSED CONDUITS FROM CEILING SPACES IN AREAS OF WORK. ABANDONED OUTLET JUNCTION BOXES ARE TO BE REMOVED AND COVERED WITH NEW GYPSUM BOARD. ABANDONED POKE THRU OUTLETS SHALL HAVE COVER PLATES AND BE FILLED WITH FIRE RATED FOAM SEALANT TO MINITAIN FIRE RATING OF FLOOR. RETURN UNUSED ELECTRICAL

ENGINEERING INC. CLIENT CENTRIC CONSULTING 6402 S. Troy Circle, Suite 100 (W) 303.936.1633 Centennial, CO 80111 (F) 303.934.3299 info@mep-eng.com www.mep-eng.com


ampu Medical Anschutz 9 olora o University

 ISSUE
 DATE


 100% CD
 10/06/2023

 Issued for Construction
 10/27/2023

ELECTRICAL DEMO ROOF PLAN

ED-2.0

GENERAL NOTES

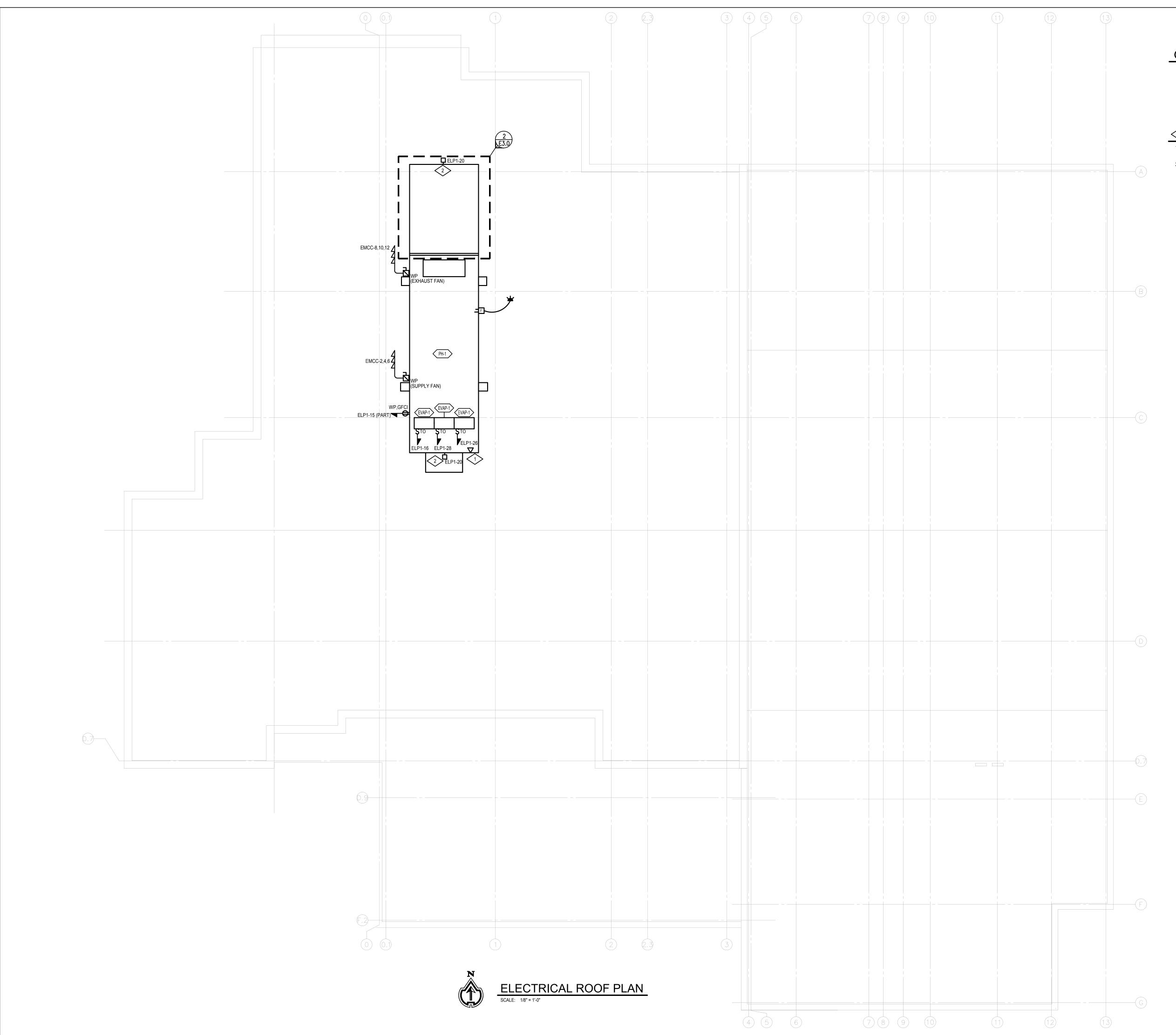
- ELECTRICAL CONTRACTOR SHALL REMOVE ALL SPARE AND UN-USED CIRCUITS FOUND DURING CONSTRUCTION. PROVIDE UPDATED TYPED PANEL SCHEDULES.
- ELECTRICAL CONTRACTOR TO LABEL ALL SWITCHES AND RECEPTACLES, NEW AND EXISTING WITH CIRCUIT NUMBERS AND PANEL NAME, CIRCUIT NUMBERS AND PANEL NAMES SHALL BE CLEAR AND LEGIBLE ON COVER PLATES. ELECTRICAL CONTRACTOR SHALL COORDINATE COLOR OF COVER PLATES WITH BUILDING MANAGEMENT.
- 3. CONTRACTOR TO VERIFY THAT MAINTENANCE RECEPTACLE IS LOCATED WITHIN 25'-0" OF EQUIPMENT.
- PROVIDE EMERGENCY LIGHT SPECIFICATION: LITHONIA ELM6L-UVOLT-LTP. CONNECT BATTERY TO UNCONTROLLED LEG OF LOCAL LIGHTING CIRCUIT.

◇ DRAWING NOTES

- CONTRACTOR TO LOCATE AND VERIFY EXISTING FREEZER CIRCUITS AND CONNECTIONS. INTERCEPT EXISTING NORMAL POWER CIRCUIT AND EXTEND TO NEW STANDBY POWER CIRCUIT AS INDICATED.
- PROVIDE EMERGENCY LIGHT SPECIFICATION: LITHONIA ELM6L-UVOLT-LTP-. CONNECT BATTERY TO UNCONTROLLED LEG OF LOCAL LIGHTING CIRCUIT.
- NEW PUMP P-4 TO REPLACE EXISTING PUMP AT SAME LOCATION. CONNECT TO CIRCUIT AS SHOWN. REFER TO MECHANICAL DRAWINGS FOR ADDITIONAL INFORMATION.

ENGINEERING INC. CLIENT CENTRIC CONSULTING 6402 S. Troy Circle, Suite 100 (W) 303.936.1633 Centennial, CO 80111 (F) 303.934.3299 info@mep-eng.com www.mep-eng.com

ampu Medical Anschutz 9 Colora o University
 ISSUE
 DATE


 100% CD
 10/06/2023

 Issued for Construction
 10/27/2023

CHECKED: RCC

POWER FLOOR PLAN

GENERAL NOTES

- ELECTRICAL CONTRACTOR SHALL REMOVE ALL SPARE AND UN-USED CIRCUITS FOUND DURING CONSTRUCTION. PROVIDE UPDATED TYPED PANEL SCHEDULES.
- ELECTRICAL CONTRACTOR TO LABEL ALL SWITCHES AND RECEPTACLES, NEW AND EXISTING WITH CIRCUIT NUMBERS AND PANEL NAME, CIRCUIT NUMBERS AND PANEL NAMES SHALL BE CLEAR AND LEGIBLE ON COVER PLATES. ELECTRICAL CONTRACTOR SHALL COORDINATE COLOR OF COVER PLATES WITH BUILDING MANAGEMENT.
- 3. PROVIDE 'IN-USE' COVER FOR ALL EXTERIOR RECEPTACLES.

○ DRAWING NOTES

PROVIDE DATA CONNECTION FOR TEMPERATURE CONTROLS. ROUTE DATA CABLING FROM FIRST FLOOR MECHANICAL ROOM. COORDINATE WITH CONTROLS CONTRACTOR.

PROVIDE NEW EXTERIOR LIGHTING FIXTURE WITH INTEGRAL PHOTOCELL ON/OFF, EQUAL TO WPX0-LED-ALO-SWW2/4000K-MVOLT-PE-DDBXD. PROVIDE MANUAL OVERRIDE TOGGLE SWITCH AT BOILER ROOM PORTION OF AIR HANDLER FOR MANUAL OFF FUNCTIONALITY.

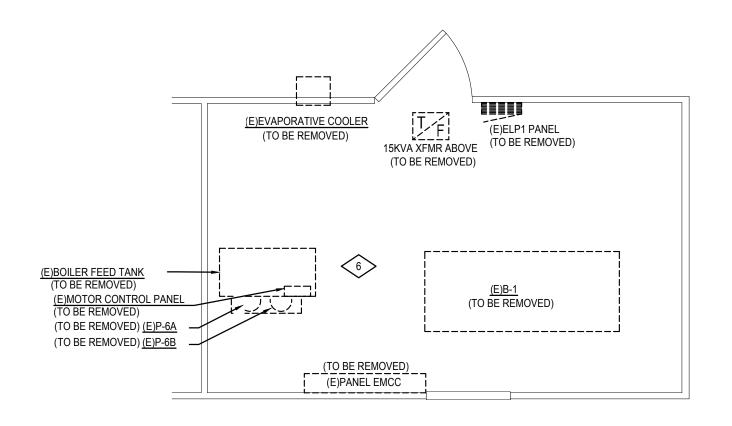
info@mep-eng.com www.mep-eng.com ampu Medical Anschutz

0

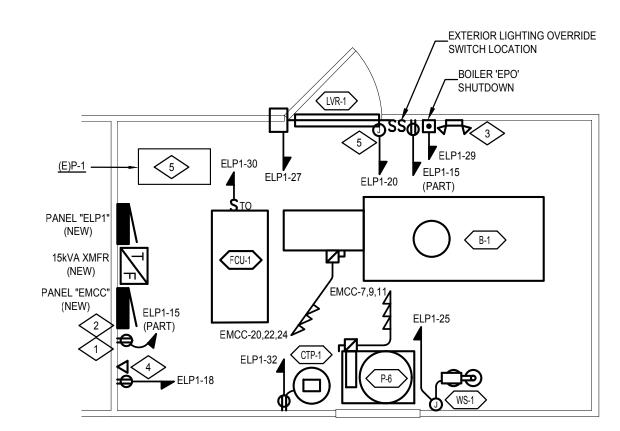
9 olora Q University Perinatal

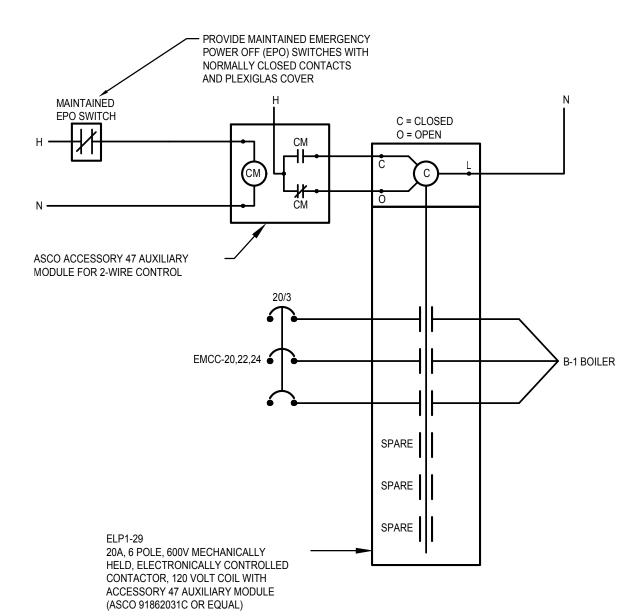
 ISSUE
 DATE

 100% CD
 10/06/2023


 Issued for Construction
 10/27/2023

CHECKED: RCC


ELECTRICAL **ROOF PLAN**


E-2.0

PENTHOUSE BOILER DEMOLITION PLAN

2 PENTHOUSE BOILER NEW PLAN SCALE: 1/4" = 1'-0"

BOILER SHUT DOWN DIAGRAM

SCALE: N.T.S.

GENERAL NOTES

- EXISTING DEVICES, CIRCUITS, AND CONDUITS SHOWN TO BE REMOVED SHALL BE REMOVED IN THEIR ENTIRETY BACK TO NEAREST DEVICE TO REMAIN. MAINTAIN CIRCUIT CONTINUITY OF ALL EXISTING DEVICES TO REMAIN.
- ELECTRICAL CONTRACTOR SHALL REMOVE ALL SPARE AND UN-USED CIRCUITS FOUND DURING CONSTRUCTION. PROVIDE UPDATED TYPED PANEL SCHEDULES.
- 3. DEMOLITION OR ABANDONING ANY ELECTRICAL AND COMMUNICATIONS CONDUIT, WIRING, CABLING, OR DEVICE MEANS TO REMOVE IN ITS ENTIRETY. REMOVE UNUSED CONDUITS FROM CEILING SPACES IN AREAS OF WORK. ABANDONED OUTLET JUNCTION BOXES ARE TO BE REMOVED AND COVERED WITH NEW GYPSUM BOARD. ABANDONED POKE THRU OUTLETS SHALL HAVE COVER PLATES AND BE FILLED WITH FIRE RATED FOAM SEALANT TO MAINTAIN FIRE RATING OF FLOOR. RETURN UNUSED ELECTRICAL EQUIPMENT AND LIGHT FIXTURES TO BUILDING MANAGEMENT FOR STORAGE AND/OR REMOVAL FROM SITE AS DIRECTED BY OWNERS.
- ELECTRICAL CONTRACTOR TO LABEL ALL SWITCHES AND RECEPTACLES, NEW AND EXISTING WITH CIRCUIT NUMBERS AND PANEL NAME, CIRCUIT NUMBERS AND PANEL NAMES SHALL BE CLEAR AND LEGIBLE ON COVER PLATES. ELECTRICAL CONTRACTOR SHALL COORDINATE COLOR OF COVER PLATES WITH BUILDING MANAGEMENT.
- 5. CONNECT ALL EXIT SIGN BATTERIES TO THE UNCONTROLLED LEG OF LOCAL LIGHTING CIRCUIT SERVING THIS AREA. CONNECT ALL LUMINAIRES BATTERY PACKS TO THE UNCONTROLLED LEG OF LOCAL LIGHTING CIRCUIT AND DRIVER TO THE SWITCHED LEG AS INDICATED. PROVIDE NINETY MINUTE BATTERY PACK.

○ DRAWING NOTES

- RECONNECT ALL EXISTING BRANCH CIRCUITRY TO NEW PANELBOARD "EMCC". EXTEND BRANCH
 CIRCUITRY AND PROVIDE NEW CONDUIT, CONDUCTORS AND JUNCTION BOXES FOR RECONNECTION AS
 NECESSARY
- 2. NEW LIGHTING IN SPACE IS TO BE FACTORY INSTALLED AND PREWIRED BY CUSTOM AIR HANDLING MANUFACTURER FOR PH-1. SEE MECHANICAL DRAWINGS FOR MORE INFORMATION. NEW LIGHTING TO BE FED FROM PANEL "EMCC". SEE SHEET E.03 FOR MORE INFORMATION.
- PROVIDE EMERGENCY LIGHT SPECIFICATION: LITHONIA ELM6L-UVOLT-LTP. CONNECT BATTERY TO UNCONTROLLED LEG OF LOCAL LIGHTING CIRCUIT.
- 4. DATA JACK CONNECTION FOR TC PANEL. CABLING TO ROUTE FROM FIRST FLOOR MECHANICAL ROOM, COORDINATE WITH CONTROLS CONTRACTOR.
- 5. COORDINATE CONNECTION OF NEW AIR HANDLER MANUFACTURER PROVIDED LIGHTS. PROVIDE TOGGLE SWITCH FOR CONTROLS IF REQUIRED.
- 6. CONTRACTOR TO PREPARE ALL ELECTRICAL DEVICES/EQUIPMENT/CIRCUITS/FEEDERS FOR COMPLETE DEMOLITION OF EXISTING AIR HANDLER. PREPARE PANEL FEEDER FOR RE-FEED AS NECESSARY TO

ENGINEERING INC.
CLIENT CENTRIC CONSULTING

6402 S. Troy Circle, Suite 100 (W) 303.936.1633
Centennial, CO 80111 (F) 303.934.3299

info@mep-eng.com www.mep-eng.com

ampu

0

University of Colorado - Anschutz Medical Perinatal Research Facility

ISSUE DATE

100% CD 10/06/2023

Issued for Construction 10/27/2023

CHECKED: RCC

ELECTRICAL

MEP JOB: 22318

DESIGNED: CMM

E-3.0